袁燕秋

袁燕秋

副教授

研究領域:蛋白質翻譯後修飾,包括精氨酸甲基化和糖基化修飾,在疾病中的調控機制以及相關藥物幹預策略;運用糖基化工程進行抗體改造,開發新一代抗體藥物。

聯系郵箱: yuanyq8@mail.sysu.edu.cn

簡單介紹

袁燕秋,博士,太阳集团1088vip副教授/博士生導師,中山大學"百人計劃"二期引進人才。回國前長期在世界三大藥企之一的諾華制藥(Novartis)的腫瘤部門擔任研究員(Investigator),帶領生化團隊參與研發多個新型抗癌藥物。袁燕秋博士在PNAS, JACS, JMC等期刊上發表多篇論文,目前研究聚焦于蛋白質翻譯後修飾,包括精氨酸甲基化和糖基化修飾,相關的生物調控機制、靶标發現和以及藥物幹預策略;運用糖基化工程進行抗體改造,開發新一代抗體藥物。

教育經曆

2008年,理學博士,化學與化學生物學系,美國哈佛大學,論文導師: Suzanne Walker

2003年,理學學士,應用化學系, 中國科學技術大學     

工作經曆

2017年9月 - 至今              中山大學副教授

2015年1月 - 2017年8月    丹麥哥本哈根大學助理教授

2008年8月 - 2014年12月  美國諾華生物醫學研究所(NIBR)研究員   

科研項目

國家自然科學基金委員會, 面上項目, 32271497,蛋白質精氨酸三甲基化修飾的發現、組學及功能探索,2023年01月至 2026年12月,55萬元,在研,主持

國家自然科學基金委員會, 青年科學基金項目, 32001044,基于“閱讀器親和富集方法”的精氨酸甲基轉移酶PRMT9的特異性底物研究,2021-01-01 至 2023-12-31,24萬元,結題,主持

 

論著專利

  1. Wu Y, You Y, Jiang T, He Y, Fan Q, Zeng X, Li T, Lu Y, Qi L, Zhou F, Sun L, Wang D, Zou Y, Zhang G, Yuan Y*, Mao Y*. Proximity  Labeling and Genetic Screening Reveal that DSG2 is a Counter Receptor of Siglec-9 and Suppresses Macrophage Phagocytosis, Advanced Science, 15 January 2025 online.
  2. Zheng J, Wang Q, Chen J, Cai G, Zhang Z, Zou H, Zou J, Liu Q, Ji S, Shao G, Li H, Li S, Chen H, Lu L, Yuan Y*, Liu P*, Wang J*. Tumor mitochondrial oxidative phosphorylation stimulated by the nuclear receptor RORγrepresents an effective therapeutic opportunity in osteosarcoma. Cell Rep. Med. 2024, Apr 24:101519.
  3. Lu L, Ye Z, Zhang R, Olsen JV*, Yuan Y*, Mao Y*. ETD-Based Proteomic Profiling Improves Arginine Methylation Identification and Reveals Novel PRMT5 Substrates. J. Proteome Res.2024, 23:1014-1027. 
  4. Wang S, Ran W, Sun L, Fan Q, Zhao Y, Wang B, Yang J, He Y, Wu Y, Wang Y, Chen L, Chuchuay A, You Y, Zhu X, Wang X, Chen Y, Wang Y, Chen Y-Q, Yuan Y*, Zhao J*, Mao Y*. Sequential Glycosylations at the Multibasic Cleavage Site of SARS-CoV-2 Spike Protein Regulate Viral Activity, Nature Communications2024, 15:4162.
  5. Zhai X, Yuan Y, He W, Wu Y, Shi Y, Su S*, Du Q*, Mao Y*. Evolving roles of glycosylation in the tug-war between virus and host. National Science Review2024https://doi.org/10.1093/nsr/nwae086
  6. Wu C*, Li J, Lu L, Li M, Yuan Y*, Li J*.OGT and OGA: Sweet guardians of the genome. J. Biol. Chem.2024, 300:107141.
  7. Zheng Y, Liang M, Wang B, Kang L, Yuan Y, Mao Y*, Wang S*. GALNT12 is associated with the malignancy of glioma and promotes glioblastoma multiforme in vitro by activating Akt signaling. Biochem. Biophys. Res. Commun.2022, 610:99-106. 
  8. Wang J, Ye X, Yang X, Cai Y, Wang S, Tang J, Sachdeva M, Qian Y, Hu W, Leeds JA, Yuan Y*. Discovery of Novel Antibiotics as Covalent Inhibitors of Fatty Acid Synthesis. ACS Chem. Biol.2020, 15: 1826-1834.
  9. Hu L, Cai X, Dong S, Zhen Y, Hu J, Wang S, Jiang J, Huang J, Han Y, Qian Y*, Yuan Y*, Hu W. Synthesis and Anticancer Activity of Novel Actinonin Derivatives as HsPDF Inhibitors. J. Med. Chem., 2020, 63: 6959-6978.
  10. Wang Y*, Hu W, Yuan Y*. Protein Arginine Methyltransferase 5 (PRMT5) as an Anticancer Target and Its Inhibitor Discovery. J. Med. Chem.201861, 9429-9441. 
  11. Six DA, Yuan Y, Leeds JA, Meredith TC.  Deletion of the β-Acetoacetyl Synthase FabY in Pseudomonas aeruginosa Induces Hypoacylation of Lipopolysaccharide and Increases Antimicrobial Susceptibility. Antimicrob. Agents Chemother.201458, 153-161.
  12. Yuan Y, Sachdeva M, Leeds JA, Meredith TC.  Fatty acid biosynthesis in Pseudomonas aeruginosa is initiated by the FabY class of β-ketoacyl acyl carrier protein synthases. J. Bacteriol.2012194, 5171-5184. 
  13. Yuan Y, Leeds JA, Meredith TC.  Pseudomonas aeruginosa directly shunts β-oxidation degradation intermediates into de novo fatty acid biosynthesis. J. Bacteriol.,2012194, 5185-5196.
  14. Yuan Y, Fuse S, Sliz P, Kahne D, Walker S.  Structural and functional analysis of the H-bonding network that anchors moenomycin in the peptidoglycan glycosyltransferase active site: implications for antibiotic design. ACS Chemical Biology20083, 429-436.
  15. Yuan Y, Barrett D, Zhang Y, Kahne D, Sliz P, Walker S. Crystal structure of a peptidoglycan glycosyltransferase suggests a model for processive glycan chain synthesis. Proc. Natl. Acad. Sci. U. S. A.2007104, 5348-5453.
  16. Yuan Y, Chung HS, Leimkuhler C, Walsh CT, Kahne D, Walker S.  In vitro reconstitution of EryCIII activity for the preparation of unnatural macrolides. J. Am. Chem. Soc.2005127, 14128-14129.
  17. Chen L, Yuan Y, Helm JS, Hu Y, Rew Y, Shin D, Boger DL, Walker S.  Dissecting ramoplanin: mechanistic analysis of synthetic ramoplanin analogues as a guide to the design of improved antibiotics. J. Am. Chem. Soc.2004126, 7462-7463.