AU1 🕨

ZTW-41, a Potent Indolizinoquinoline-5,12-Dione Derivative Against Drug-Resistant *Staphylococci* and *Enterococci* Bacteria

AU2 ►

Chong-Fa Lai^{1,2,*} Wei-Bin Xiao^{2,*} Hua-Cheng Yan³, Hui Yang⁴, Lu-Xia Wang², Hui Guan², Qiu-ju Peng³, Zhi-Rong **D**eng³, Jian-Wen Chen⁴, Lin-Kun An^{4,5}, and Lei Shi^{1,2}

ZTW-41, an indolizino uinoline-5,12-dione derivative, was investigated or antibacterial activity against Grampositive bacteria, especially methicillin-resistant $\Im a h \stackrel{?}{,} c cc a e$ (MRSA). In our study, the MIC₉₀s (minimum inhibitory concentrations) o ZTW-41 against MRSA (MRSA, =200), methicillin-sensitive S. $a \in (MSSA, =100), E \models c \ cc \ faeca'i \ (E. faeca'i \ , =32), and E \models c \ cc \ faeci$ (E. faeci = 32) were 0.25, 0.25, 0.125, and 8 µg/mL, respectively, whereas the MBC₉₀s (minimum bactericidal concentrations) were 2, 1, 1, and $>32 \mu g/mL$, respectively. ZTW-41 maintained its potency at di erent pH levels (range 5–9) and in starting inoculum size up to 10^7 CFU/mL. The presence o human serum (25–75%) increased ZTW-41 MICs by two- to eight old. Time-kill curves showed that ZTW-41 had bactericidal activity against MRSA, MSSA, and E. faeca'i strains within 8 hours, and rebound growth occurred a ter 8 hours except at higher multiples o the MIC ($4 \times$ and $8 \times$). In the acute toxicity study, no mortality or signs o toxicity was noted in mice a ter 14 days o observation at doses <50 mg/kg. ZTW-41 exhibited good selectivity indices (SIs) $(SI = IC_{50}/MIC_{90})$ ranging rom 1.12 to 71.76 against clinical isolates, demonstrating excellent therapeutic selectivity in MRSA, MSSA, and E. faeca'i strains. Moreover, the $i \neq \psi_{v}$ e ficacy (e ective dose [ED]₅₀= 6.59 mg/kg) o ZTW-41 was ound comparable with vancomycin. Collectively, our avorable results supported ZTW-41 as a promising investigational candidate or treating drug-resistant bacteria in ection.

Keywords: ZTW-41, indolizino uinoline-5,12-dione derivatives, Gram-positive bacteria, MRSA, antibacterial activity

Introduction

AU4 AU5 OVER THE LAST DECADE, multidrug-resistant bacteria have posed serious threats to global public health, and represent a leading cause o morbidity and mortality globally.^{1,2} Among them, methicillin-resistant $\Im a h$ i c cca e (MRSA) is an in amous pathogen and rises as a significant clinical concern as it can cause li e-threatening in ections such as septic shock, endocarditis, and severe pneumonia, which brings great challenge to human beings.³ In recent years, the rocketing incidence o MRSA in ections has been ound in the community and hospitals.⁴ According to the Centers or Disease Control and Prevention (CDC),⁵ >2 million people su er rom antibiotic-resistant in ections every year, and ~23,000 people die rom these in ections in

the United States. It is estimated that 80.461 invasive MRSA < AU6 in ections and >11,000 related deaths occurred in 2011 in the United States. Based on the monitoring results rom China Antimicrobial Surveillance Network (CHINET), the prevalence o methicillin-resistant strains was 35.3% in S. in Chinese hospitals in 2017, which represented a e predominant pathogens in multiple in ectious diseases or its high resistance rates to most o antimicrobial agents.⁶ At the same time, hospital-ac uired MRSA has become increasingly resistant to the limited available antibiotics,⁷ and ew new drugs are introduced into market,⁸ which means that the world is going to lack e ective antibiotics. There ore, the current situation puts orward an austere challenge, and highlights the need or the development o more potent antibiotics as alternative therapy against MRSA.8,9

AU3 🕨

¹Southern Medical University, Guangzhou, China.
 ²General Hospital o Southern Theatre Command, Guangzhou, China.
 ³Center or Disease Control and Prevention o Guangzhou Military Command, Guangzhou, China.

⁴School o Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.

⁵Guangdong Provincial Key Laboratory o New Drug Design and Evaluation, Guangzhou, China.

2

In the previous research, 9-bromo-substituted indolizino uinoline-5,12-dione derivatives showed excellent antibacterial activity against Gram-positive bacteria, especially MRSA.¹⁰ According to structure–activity relationship studies o these derivatives,^{10,11} the structure o 9-bromosubstituted indolizino uinoline-5,12-dione is essential or the antibacterial activity, and ester analogs with a longer side chain and amino terminal group at 6-position play a vital role in its improved water solubility. Among many derivatives,

F1► ZTW-41 (Fig. 1) is the most promising candidate compound or its potent anti-MRSA activity and satis actory water solubility.¹⁰ The mechanism o the active compound was to inhibit the activity o DNA gyrase and DNA topoisomerase IV.¹² This dual targeting is believed to help reduce the selection o resistant mutants and enhances potency against bacteria.¹³

However, the i ψ pharmacodynamics properties o ZTW-41 were unknown, and the i $\psi_{i}v_{p}$ e ficacy in animal model remained to be evaluated. The objective o the present research was to investigate the i ψ activity o ZTW-41 against Gram-positive isolates, and the mouse sepsis protection model was used to evaluate i $\psi_{i}v_{p}$ e ficacy. In addition, the cytotoxicity in HepG2 cells and the acute toxicity study o ZTW-41 were primarily assessed in mice. The plasma protein binding rates were also determined in rat and human plasma.

Materials and Methods

Bacterial strains and antimicrobials

Minimum inhibitory concentrations (MICs) were determined against 364 clinical isolates, including MRSA (MRSA, =200), methicillin-sensitive *S. a e* (MSSA, =100), $E + e \ c \ cc \ faeca'i \ (E. faeca'i, =32)$, and $E + e \ c \ cc$ faeci (E. faeci =32). These strains were collected rom General Hospital o Southern Theatre Command rom 2015 to 2018. All o the isolates had been identified by VITEK[®]

FIG. 1. The structure o ZTW-41.

LAI ET AL.

Minimum inhibitory concentration

The MICs were determined by standardized broth microdilution recommended by CLSI guidelines.¹⁴ The test \triangleleft AU7 medium or these strains was cation-adjusted Mueller-Hinton broth (CAMHB) except S. a e were grown in CAMHB supplemented with 2% NaCl when the susceptibility o oxacillin was determined. Exponential-phase organisms were generated to the turbidity o 0.5 McFarland standard (Densimat; BioMerieux, SA, France) and urther diluted in CAMHB to target a final cell density o $\sim 5 \times 10^5$ cells/mL. The plate was incubated at 37°C or 16–20 hours, ◀AU8 except the incubation time was 24 hours when the MIC o oxacillin and vancomycin was tested. The MIC was defined as the lowest concentration o antimicrobial agent with no visible growth. Experiments were per ormed with biological triplicates. Susceptibility and resistance to these antibiotics were determined using CLSI breakpoints.

For evaluating the pH e ect on MIC, CAMHB was adjusted to pH 5, 7, or 9 with appropriate volumes o HCl or NaOH. Inoculum e ects were tested in the starting inoculum size rom 10^3 to 10^8 CFU/mL. And the e ect o serum \triangleleft AU9 concentration on MICs was estimated by supplementing CAMHB with 25%, 50%, and 75% (vol/vol) human serum (Sigma-Aldrich, China).

Minimum bactericidal concentration

The minimum bactericidal concentrations (MBCs) o ZTW-41, vancomycin, ampicillin, and oxacillin were determined. An ali uot $100 \,\mu\text{L}$ content rom the wells con- **4**AU10 taining concentrations higher than or e ual to the MIC was plated onto blood agar by the sur ace viable-count method. The colonies were counted a ter incubating or 24 hours at 37° C. The MBC was defined as the lowest drug concentration that reduced viable organism counts by $\geq 3 \log 10$ in **4**AU11 24 hours.¹⁵

Time-kill kinetics

For time-kill kinetics, ZTW-41 was tested against ATCC 43300, ATCC 29213, ATCC 29212, and each clinical isolate o MRSA, MSSA, and *E. faeca'ii* at concentrations o $0.5 \times$, $1 \times$, $2 \times$, $4 \times$, and 8×0 the MIC. At time 0, 2, 4, 8, and 24 hours, an ali uot o $100 \,\mu$ L rom all ZTW-41 concentration tubes was sampled; serially 10- old dilutions o the suspension in sterile PBS were plated on blood agar and incubated at 37° C or 24 hours. Dilution was expected to minimize the carryover e ect o antibiotics. Colonies were enumerated, and results were expressed as \log_{10} CFU/mL. Time-kill experiments were done in triplicates. Growth \triangleleft AU13 control was done with no antibiotic added to the studied

IN VITRO AND IN VIVO ACTIVITIES OF ZTW-41

strain. The lower limit o bacterial detection utilized was 2 log10 CFU/mL. Bacterial concentrations <2 log10 CFU/mL were counted as 2 log10 CFU/mL. Bactericidal and bacteriostatic activities were defined as a \geq 3 log₁₀ CFU/mL decrease and 0 to <3 log10 CFU/mL decrease in bacterial counts a ter 24 hours o incubation, respectively.

Mammalian cytotoxicity

Cell Counting Kit-8 (CCK-8) was used to determine the cytotoxicity o ZTW-41. In brie , HepG2 cells (ATCC HB-8065) were cultured in Dulbecco's modified Eagle's medium supplemented with 10% etal bovine serum. The cells were incubated at 37°C and 5% CO_2 or 24 hours, and the medium was replaced with resh medium containing di erent concentrations o ZTW-41 or vancomycin. A ter 2 hours o incubation, the A490 nm (OD₄₉₀) was measured using a Thermo Multiskan GO Microplate Reader. IC₅₀ values were determined rom biological triplicates. The selectivity index (SI) was calculated using the IC₅₀ and MIC data or ZTW-41 and vancomycin.

Mouse sepsis protection model

All the studies on animals ollowed the Guidelines or the Care and Use o Laboratory Animals. Kunning mice (18–22 g) were purchased rom Animal Experimental Center, Guangdong Academy o Medical science. All the animals were acclimatized under controlled conditions (temperature $25^{\circ}C \pm 2^{\circ}C$, humidity 40–60%, 12-hours light/dark cycle) with standardized diet or ~7 days. All the mice were asted or 12 hours be ore the experiments with ree access to water.

The mouse sepsis protection model in mice was perormed as previously described.¹⁶ In brie , Kunming strainderived male mice were in ected intraperitoneally with 0.5 mL o MRSA 43300 suspension $(1.25 \times 10^8 \text{ CFU/kg})$, a concentration that achieves 100% mortality within 72 hours a ter in ection. At 6 hours, 1, 2, 3, 4, 5, and 6 days postinection, mice (10/group) received ZTW-41 at single intraperitoneal doses o 2.5, 5, 10, and 20 mg/kg. Control mice were dosed with vehicle or vancomycin at a dose o 10 mg/kg. Mortality was observed daily or 7 days postinection. The median e ective dose (ED₅₀) and 95% confidence limits were determined by GraphPad Prism 6.0 so tware.

Acute toxicity study

Acute toxicity test was carried out according to the Organization or Economic Co-operation and Development (OECD) guidelines or Testing o Chemicals.¹⁷ A total o 20 mice weighing between 24 and 30 g were randomly divided into 5 experimental groups o 4 mice each. A ter an overnight ast, ZTW-41 was administered intraperitoneally to each treatment group at single doses o 25.6, 32, 40, and 50 mg/kg, respectively. The control group was treated with the same volume o normal saline. All animals were observed or the mortality and changes in general behavior or 24 hours a ter treatment. Symptoms o toxicity such as hypoactivity, piloerection, breathing di ficulty, tremors, and convulsion were evaluated a ter administration o the various doses o ZTW-41. During the remaining experimental period, the animals were monitored and observed at least once daily or the postdosing period o 14 days. Body weights were measured at the initiation o treatment, and on days 2, 7, and 14 a ter administration. All results were expressed as mean \pm standard deviation. The statistical signi icance o di erences between means was calculated using one-way ANOVA, ollowed by Dunnett's test or multiple comparisons with the control group.

Plasma protein binding

The protein binding o ZTW-41 in rat and human plasma was per ormed using a rapid e uilibrium dialysis (RED) kit (Thermo Fisher Scientific) with LC-MS/MS analysis.¹⁶ Drugs were added to rat or human plasma to achieve final concentrations o 2,000 ng/mL. Plasma solutions (200 µL) were placed into the sample chamber and $350\,\mu$ L o PBS into the adjacent chamber. The plate was incubated at 37°C on an orbital shaker (1.5 g approx.) or 4 hours. Then, aliuots $(50 \,\mu\text{L})$ o the samples rom both sides were processed, and 50 µL o blank plasma or PBS was added to each sample. Five hundred microliters o methanol containing 1µg/mL carbamazepine IS was added and centriuged at 12,800 g or 5 minutes be ore LC-MS/MS analysis. Experiments were per ormed with six biological replicates. The percentage o the compound bound to protein was calculated as the ormula given below according to test compound concentration in protein-containing (PC) compartment and in protein- ree (PF) compartment:

% Plasma protein binding
$$= \frac{PC - PF}{PC}$$
.

Results

MIC and MBC determinations

ZTW-41 was ound to be highly active against a panel o standard Gram-positive pathogens, and the MIC values o ZTW-41 evaluated or ATCC29213, ATCC 43300 (MRSA), ATCC 29212 (*E. faeca\i*i), and ATCC 700699 (VISA) were 0.25, 0.25, 0.031, and 0.25 µg/mL, respectively (Table 1), **◄**T1

Table 1. Summary of Minimum Inhibitory Concentration and Minimum Bactericidal Concentration Values (µg/mL) for ZTW-41 and Comparators Against Gram-Positive ATCC Strains

S•a da d	ZTW-41		Va c ci		0 aciĩii	
ba o e 1a) * ai	MIC	MBC	MIC	MBC	MIC	MBC
ATCC 29213 ATCC 43300 ATCC 29212 ATCC 700699	0.25 0.25 0.031 0.25	0.5 0.5 0.25 8	0.5 1 2 8	1 2 >64 32	0.25 32 1 >128	0.25 64 >64 ND

ATCC 29213: MSSA; ATCC 43300: MRSA; ATCC 29212: *E* ▶ *e c cc faeca*^{*i*}*i* ; ATCC 700699: VISA.

MBC, minimum bactericidal concentration; MIC, minimum inhibitory concentration; MRSA, methicillin-resistant *S. a e*; MSSA, methicillin-sensitive *S. a e*; ND, not detected; VISA, vancomycin-intermediate $\mathbf{S} \cdot \mathbf{a} \cdot \mathbf{h}^{2} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{a} \cdot \mathbf{e}$.

which were comparable with or more active than vancomycin and oxacillin. However, Gram-negative bacteria were less susceptible than Gram-positive bacteria. The MIC o ZTW-41 against *E. c* i (ATCC 25922) was 4 µg/mL, and the MICs against *A. ba a ii* (ATCC 19606), *P. ae gi a* (ATCC 27853), and *K. e iae* (ATCC 700603) were all >16 µg/mL (data not shown).

In previous work, MRSA was susceptible to ZTW-41 (=100), with an MIC₅₀ value o $0.063 \mu g/mL$ and an MIC₉₀ value o $0.125 \mu g/mL$, 16- old more active than vancomycin.¹⁰ The potent antibacterial activity o ZTW-41 was urther confirmed in a number o clinical strains in the

T2 present work, as shown in Table 2. Overall, ZTW-41 was the most potent agent against 364 Gram-positive bacteria tested compared with vancomycin, oxacillin, ciprofloxacin, levofloxacin, moxifloxacin, linezolid, and ampicillin. All MRSA and MSSA clinical strains in our study were highly susceptible to ZTW-41, with MICs ranging between 0.031 and 0.5 µg/mL, which were e ual to or lower than comparator agents. The MIC_{50/90} values or ZTW-41 to MRSA were 0.125 and 0.25 µg/mL, respectively. And the MIC_{50/90} values or MSSA were 0.063 and 0.25 µg/mL, respectively. For *E. faeca*ii tested, the MIC_{50/90} values were 0.063 and 0.125 µg/mL, and MIC_{50/90} values against *E. faeci* were 0.063 and 8 µg/mL, respectively.

An important eature o ZTW-41 is its strong bactericidal property. An antibiotic was considered to show bactericidal activity against a particular strain when the MBC/MIC ratio was $\leq 4.^{18}$ ZTW-41 showed excellent bactericidal activity to ATCC 29213 and ATCC 43300, with MBC values o 0.5 µg/mL against them. In addition, ZTW-41 showed bacteriostatic activity against ATCC 29212 and ATCC 700699 as the MBC/MIC values were 8 and 32, respectively (Table 1). As or clinical strains, the MBC₉₀ values o ZTW-41 or MRSA and MSSA were 0.5 and 0.25 µg/mL, respectively, while those o vancomycin were both 2 µg/mL (Table 3). For *E. faeca'i* and *E. faeci* ►*e*►*ed* ZTW-41 **◄**T3 MBC 50 val e e e 0.25 a d 4 µg/mL, respectively. ZTW-41 was bactericidal against 80.5% (161/200) o MRSA isolates and 90.0% (90/100) o MSSA isolates, exhibiting an MBC/MIC ratio ≤4, when vancomycin were 71.5% (143/ 200) and 72.0% (72/100), respectively. ZTW-41 was bactericidal against 46.9% (15/32) o E. faecali, while vancomycin and ampicillin were 6.3% (2/32) and 37.5% (12/ 32), respectively (data not shown).

Various cultural conditions or bacteria (such as pH, starting inoculum size, and human serum) may a ect the MIC values.¹⁹ In our study, the MICs o ZTW-41 against ATCC 29213 or ATCC 43300 were slightly a ected by pH (5-9) or inoculum size $(10^3 \text{ to } 10^7 \text{ CFU/mL})$, a similar

				$MIC (\mu g/L)$				
S ecie	N. fi ae	A ▶ ibi ▶ ic	Ra ge	<i>MIC</i> ₅₀	MIC ₉₀	<i>S</i> %		
MRSA	200	ZTW-41	0.031-0.5	0.125	0.25	_		
		Vancomycin	0.25 - 2	0.5	1	100		
		Oxacillin	4 to >128	>128	>128	0		
		Ciprofloxacin	0.5-8	2	8	39.0		
		Levofloxacin	0.12-8	2	8	45.0		
		Moxifloxacin	0.12-8	1	8	44.5		
		Linezolid	1–4	2	2	100		
MSSA	100	ZTW-41	0.031-0.25	0.063	0.5			
		Vancomycin	0.25 - 1	0.5	1	100		
		Oxacillin	0.063 - 2	0.25	1	100		
		Ciprofloxacin	0.25-8	0.5	2	88.0		
		Levofloxacin	0.12-2	0.125	0.5	92.0		
		Moxifloxacin	0.125-1	0.25	0.5	98.0		
		Linezolid	1-4	2	2	100		
E⊧e c cc faeca'i	32	ZTW-41	0.016-0.25	0.063	0.125			
		Vancomycin	0.5–4	1	2	100		
		Ampicillin	0.5 to >128	1	4	94.8		
		Ciprofloxacin	0.5-8	1	8	62.5		
		Levofloxacin	0.25-8	1	8	62.5		
		Moxifloxacin	0.25-16	0.5	8			
		Linezolid	2	2	2	100		
E⊧e c cc faeci	32	ZTW-41	0.016 to >32	0.063	8			
Ū		Vancomycin	0.5-128	0.5	64	87.5		
		Ampicillin	0.5 to >128	>128	>128	12.5		
		Ciprofloxacin	1–16	8	8	6.25		
		Levofloxacin	1–16	8	8	3.13		
		Moxifloxacin	0.5-16	8	8			
		Linezolid	1–2	2	2	100		

Table 2. Summary of Minimum Inhibitory Concentration Values (μ G/mL) for ZTW-41 and Comparators Against Clinical Isolates

Interpretation based on CLSI breakpoints (M100-S25) or vancomycin, oxacillin, ampicillin, ciprofloxacin, levofloxacin, Moxifloxacin, and linezolid.

MIC₅₀/MIC₉₀, minimum inhibitory concentration reached by 50% or 90% o the strains; respectively; S, susceptible.

IN VITRO AND IN VIVO ACTIVITIES OF ZTW-41

			Λ	ABC (µg/ L)	
S ecie	N.fi îa≱e	A ▶ ibi ▶ic	Ra ge	MBC ₅₀	MBC ₉₀
MRSA	200	ZTW-41	0.063-8	0.5	2
		Vancomycin	0.25-32	2	8
MSSA	100	ZTW-41	0.063-2	0.25	1
		Vancomycin	0.5-8	2	4
		Oxacillin	0.25-4	1	2
E⊧e c cc faeca'li	32	ZTW-41	0.063 - 2	0.25	1
Ŭ		Vancomycin	1 to >128	64	>128
		Ampicillin	2 to >128	16	>128
E⊧e c cc faeci	32	ZTŴ-41	0.063 to >32	4	>32
u u		Vancomycin	1 to >128	>128	>128
		Ampicillin	4 to >128	>128	>128

TABLE 3. SUMMARY OF MINIMUM BACTERICIDAL CONCENTRATION VALUES (µg/mL) FOR ZTW-41 AND COMPARATORS AGAINST CLINICAL ISOLATES

T4 ► behavior to that observed with vancomycin (Table 4). However, the MICs increased 16- old in 10⁷ CFU/mL inoculum size compared with standard condition in ATCC 29212, which suggested an inoculum e ect o ZTW-41 in this strain. The presence o human serum increased ZTW-41 MICs by two- to eight old. In comparison, vancomycin was more stable in the presence o human serum, with the MIC values changing by one- to two old (Table 4).

observed a ter 8 hours when exposed to $0.5 \times$, $1 \times$, $2 \times$, and $4 \times$ MICs o ZTW-41. As or *E. faeca'ii* clinical isolate 306002, the same results were obtained as ATCC 29212.

Mammalian cytotoxicity

Time-kill studies

Our *i* ↓ time-kill experiments suggested that ZTW-41 had bactericidal activity against MRSA, MSSA, and *E. faeca'i* strains. For ATCC 43300, ZTW-41 demonstrated significantly killing activity at concentrations o 4×and
F2 8×MIC in 24 hours (Fig. 2). Bactericidal activity occurred in the presence o 1×and 2×MIC within 8 hours, and re-

In the presence of 1× and 2× MIC within 8 hours, and rebound growth occurred a ter 8 hours. The results or MRSA clinical isolate 408235 were identical to that o ATCC 43300. Compared with MRSA, ZTW-41 exhibited better bactericidal activity against ATCC 29213 and achieved
F3 ► bacterial killing at 2×, 4×, 8×MIC in 24 hours (Fig. 3). It could be observed that the isolates regrew at 0.5× and 1×MIC in which a remarkable increase in growth occurred rom 4 to 24 hours time point. The curves or MSSA clinical

isolate 616033 were similar to that o ATCC 29213. With respect to ATCC 29212, ZTW-41 showed bactericidal activity in 4×and 8×MIC in 4 hours, and no isolates were
F4► observed in 8×MIC over 24 hours (Fig. 4). Regrowth was

It is critically significant to assess the potential cytotxicity o a test agent as drug toxicity is an important aspect in new drug development. The $i \neq cytotoxicity$ o ZTW-41 was investigated in HepG2 cells (Fig. 5). The IC₅₀ values o **<**F5 ZTW-41 and vancomycin were 8.97 and 12.22 µg/mL, respectively. The inhibition rates o ZTW-41 and vancomycin were 80.3% and 67.8%, respectively, when tested at the highest concentration (100 µg/mL). The SIs o ZTW-41 and vancomycin were determined as an estimate o a therapeutic window. ZTW-41 possessed good SIs ranging rom 1.12 to 71.76, while vancomycin showed much lower SIs ranging rom 0.19 to 12.22 (Table 5). The highest value o 71.76 was **<**T5 determined or ZTW-41 against *E. faeca'i*. Considering SI, ZTW-41 was a more avorable antibiotic than vancomycin.

Mouse sepsis protection model

Given the i i activity along with the desirable therapeutic selectivity, the i i_i v_i e ficacy o ZTW-41 against MRSA was determined in the mouse septicemia model. Figure 6 illustrates the survival rate o mice treated with \triangleleft F6 ZTW-41 and vancomycin in experimental septicemia model. As shown in Fig. 6, ZTW-41 demonstrated dosedependent e ects on survival in this model in ected with

			MIC ($\mu g/L$) de the i dicted c divi										
				Н		Sha⊧igic î (CFU/L)		Нае					
Mic	ga i	С	d	5	7	9	10^{3}	10 ⁵	10 ⁷	0	25%	50%	75%
ATCO	C 29213	ZTW-4 Vanco	41 mycin	0.5 2	0.25 0.5	0.5 2	0.031 0.5	0.25 0.5	0.5 2	0.25 0.5	0.5 0.5	$ \begin{array}{c} 1 \\ 0.5 \end{array} $	$ \begin{array}{c} 1 \\ 0.5 \end{array} $
ATCO	C 43300	ZTW-4 Vanco	41 mvcin	0.5 2	0.25 1	0.25 2	0.25 1	0.25 1	0.5 2	0.25 1	0.25 0.5	0.5 1	0.5 1
ATCO	C 29212	ZTW-4 Vanco	41 mvcin	0.25 2	0.031 2	0.063 4	0.031 1	0.031 2	0.5 4	0.031 2	0.25 2	0.25 2	0.25 4

TABLE 4. EFFECT OF PH, INOCULUM SERUM, AND SERUM CONCENTRATION ON THE MINIMUM INHIBITORY CONCENTRATIONS OF ZTW-41 AND VANCOMYCIN AGAINST STAPHYLOCOCCUS AUREUS AND ENTEROCOCCUS FAECALIS

AU14► MRSA 43300. The treatment o ZTW-41 at 10 mg/kg resulted in a survival rate o mice comparable with vancomycin at 10 mg/kg. Moreover, up to 90% o mice survived >7 days when ZTW-41 was administered at the highest doses o 20 mg/kg. As control, injection with vehicle alone led to 100% mortality in this model within 7 days postin-

FIG. 5. Cytotoxicity and selectivity index o the ZTW-41 and vancomycin. The cytotoxicity o ZTW-41 against HepG2 cells. HepG2 cells were incubated with di erent concentrations o ZTW-41 and vancomycin, and CCK-8 was used to determine cell viability. Graphs represent mean o three independent experiments \pm SD (mean \pm SD). IC₅₀ values were calculated rom the means o three independent experiments. CCK-8, Cell Counting Kit-8; SD, standard deviation.

ection. In the septicemia model, the ED_{50} o ZTW-41 was 6.59 mg/kg. The ED_{50} values indicated that ZTW-41 was highly e ficacious in treating mice in ected with MRSA.

Acute toxicity study

The changes in the body weights in each ZTW-41 treatment group are shown in Fig. 7. Overall, ZTW-41 treatment ◀F7 decreased motor activity in each group within 30 minutes a ter administration, and then mice gradually returned to normal. At doses <50 mg/kg, ZTW did not produce any death or signs o toxicity in mice throughout the 14 days

 TABLE 5. CYTOTOXICITY AND SELECTIVITY INDEX

 OF THE ZTW-41 AND VANCOMYCIN

S ecie	A ▶ ibi ▶ ic	<i>MIC</i> ₉₀ (μg/ L)	<i>IC</i> ₅₀ (μg/ L)	IC ₅₀ /MIC ₉₀
MRSA	ZTW-41	0.5	8.97	17.94
	Vancomycin	1	12.22	12.22
MSSA	ZTW-41	0.25	8.97	35.88
	Vancomycin	1	12.22	12.22
E⊧e c cc	ZTW-41	0.125	8.97	71.76
faeca'li	Vancomycin	2	12.22	6.11
E i e c cc	ZTW-41	8	8.97	1.12
faeci	Vancomycin	64	12.22	0.19

SI was calculated or ZTW-41 and vancomycin taking into account the MIC_{90} against clinical isolates and the IC_{50} on HepG2 cell line (SI= IC_{50}/MIC_{90}) by the CCK-8 assay.

CCK-8, Cell Counting Kit-8; SI, selectivity index.

7

FIG. 6. ZTW-41 is e ficacious in septicemia protection model. ZTW-41 is e ficacious in septicemia protection model. Survival is depicted 7 days a ter in ection (10 mice/group). * < 0.05, ** < 0.01, *** < 0.001, compared with in ection control group (determined by nonparametric log-rank test).

study period. Moreover, the treatment groups did not show remarkable changes in body weight during the experimental period compared with the control group.

Plasma protein binding

AU24►

Plasma protein binding was assessed by the RED approach and determined as the percentage o bound drug. The protein binding rates o propranolol in rat and human plasma were assessed as the uality control, and our results were in agreement with those reported in the re erence, 87.73% and 89.73%, respectively.²⁰ The protein binding rates o ZTW-

T6 ► 41 were 97.87% and 97.80%, respectively (Table 6). No significant statistical di erence was observed or plasma protein binding o ZTW-41 in rat and human plasma.

Discussion

Antibiotic resistance in bacteria has weakened the e ectiveness o drugs that people have been relying on or nearly a century, and ew new drugs have entered clinical trials

AU25►
 FIG. 7. The acute toxicity study o ZTW-41. Changes in the body weights in mice treated with ZTW-41 in the acute toxicity study in 14-day treatment. Data are represented as the mean±SD (4 mice/group). * <0.05, ** <0.01, compared with control group (determined by one-way ANOVA).

TABLE 6.	Plasma	Protein	BINDING	of ZTW-41

AT CONCENTRATION OF 2,000 NG/ML	
$(N=6, Mean \pm Standard Deviation)$	

	% ¹ a a	▶ei bi di g
C d	Ra la a	H a [°] la a
ZTW-41 Propranolol	97.87 ± 0.20 87.73 ± 0.58	97.80 ± 0.21 89.73 ± 0.63

rom laboratories.²¹ It is estimated that only two distinctly new antibiotic classes have been introduced into the market over the past 30 years⁸: the oxazolidinone linezolid in 2000 and the cyclic lipopeptide daptomycin in 2003. However, showing up resistance to some o these new antibiotics results in a growing demand or new antibiotics, pushing development o novel products and new chemical classes o antibiotics.^{22–24}

ZTW-41 is an indolizino uinoline-5,12-dione derivative that possesses potent antibacterial activity against Grampositive bacteria. Similar to most anti-MRSA drugs, such as vancomycin and other newly approved antibiotics, such as dalbavancin²⁵ and delafloxacin,²⁶ the antimicrobial spectrum o ZTW-41 is limited to Gram-positive bacteria. In our study, ZTW-41 was significantly active against MRSA and MSSA. The strong antimicrobial activity o ZTW-41 was consistent with data reported by Yang \bullet $a^{1.10}$ Although vancomycin has generally been used as the first choice or treating MRSA in ections,²⁷ vancomycin-intermediate S. 28 and vancomycin-resistant S. $a e^{29}$ are rising up a e and associated with vancomycin treatment ailure in recent years. Notably, the MIC value or ZTW-41 to ATCC 700699 (VISA) was 0.25 µg/mL, 32- old more potent than vancomycin, while the MBC value was 8 µg/mL, 4- old more potent than vancomycin. These results showed the potential o ZTW-41 to cure these di ficult-to-treat in ections. Despite a similar mechanism to that o uinolones, ZTW-41 remained active to those uinolone-resistant bacteria (Table 2). The lack o cross-resistance to present available uinolones and other cell wall-inhibiting antibiotics added important values to ZTW-41, which may find application in patients in ected by drug-resistant bacteria. Besides, our research first evaluated the activity o ZTW-41 against E. faeca'i and E. faeci . ZTW-41 was the most potent agent against E. faeca'i and E. faeci compared with vancomycin, ampicillin, ciprofloxacin, levofloxacin, Moxifloxacin, and linezolid, exhibiting MIC₅₀ values o both 0.063 µg/mL against these two strains. In particular, the activities o ZTW-41 against E. faeci were generally lower than that o E. faecali, which were similar to vancomycin and ampicillin. O note, there were two E. faeci strains showing MIC values >32 µg/mL, suggesting ZTW-41-resistant phenotype in these strains. ZTW-41 showed comparatively potent activity against ATCC 29213 and ATCC 43300 even at high inoculum level, except an inoculum e ect was observed in ATCC 29212. When evaluated at di erent pH levels, MICs o ZTW-41 did not show significant fluctuation.

Although moderate shi t in MIC was observed in the presence o human plasma, ZTW-41 maintained potent antibacterial activity against these strains, showing 2- to 16old more potent than vancomycin. A possible explanation or this shi t, to some extent, may be attributed to the binding to serum albumin, which could decrease the concentration o the ree drug.³⁰ The e ect o human serum on the antibacterial activities was paralleled to our protein binding results, which correlated with the significantly high levels o protein binding o ZTW-41.

The bactericidal index is an important eature to assess

AU15 ► bactericidal activity o antibiotics, representing the total bacterial killing over a drug concentration range.^{31,32} The bactericidal activity o ZTW-41 discussed in our study was presented in MBC results and time-kill curves. There were no colonies calculated at 4× and 8×MICs or MRSA and MSSA and 8×MIC or *E. faecai* i in time-kill assays, which demonstrated the significant killing potential o ZTW-41. The rapid bactericidal activity o ZTW-41 against Gram-positive bacteria made it an ideal candidate or prevention and treatment o in ections caused by these important bacteria. However, it should be noted that, in spite o reductions in the viable CFU/mL in time-kill experiments, there was evidence o re-

- 10
- Parrino, B., D. Schillaci, and I. Carnevale. 2019. Synthetic small molecules as anti-biofilm agents in the struggle against antibiotic resistance. Eur. J. Med. Chem. 161:154–178.
- Yang, H., H. Wang, T. Zhu, L. Yu, J. Chen, L. Wang, L. Shi, D. Li, L. Gu, Z. Huang, and L. An. 2017. Syntheses and antibacterial activity o soluble 9-bromo substituted indolizino uinoline-5,12-dione derivatives. Eur. J. Med. Chem. 127:166–173.
- Cheng, Y., L. An, N. Wu, X. Wang, X. Bu, Z. Huang, and L. Gu. 2008. Synthesis, cytotoxic activities and structure activity relationships o topoisomerase I inhibitors: indolizino uinoline-5,12-dione derivatives. Bioorg. Med. Chem. 16:4617–4625.
- Wu, X., Z. Wu, L. Wang, H. Zhang, J. Chen, W. Zhang, L. Gu, Z. Huang, and L. An. 2011. Synthesis, antimicrobial activity and possible mechanism o action o 9-bromosubstituted indolizino uinoline-5,12-dione derivatives. Eur. J. Med. Chem. 46:4625–4633.
- Azam, M.A., J. Thathan, and S. Jubie. 2015. Dual targeting DNA gyrase B (GyrB) and topoisomerse IV (ParE) inhibitors: a review. Bioorg. Chem. 62:41–63.
- AU19► 14. Clinical and Laboratory Standards Institute. 2009. Per ormance Standards or Antimicrobial Disk Susceptibility Tests; Approved Standard-Tenth Edition. Clinical and Laboratory Standards Institute.
- AU20 ► 15. Leber, A.L. 2016. Clinical Microbiology Procedures Handbook. 4th ed.
 - Reyes, N., J.B. Aggen, and C.F. Kostrub. 2011. In vivo e ficacy o the novel aminoglycoside ACHN-490 in murine in ection models. Antimicrob. Agents Chemother. 55: 1728–1733.
 - 17. Organisation or Economic Co-operation and Development. (1992) OECD (Organization or Economic Co-Operation and Development) Guideline or Testing o Chemicals. Fish, Acute Toxicity Test. Available at https:// stats.oecd.org
 - Flamm, R.K., D.J. Farrell, P.R. Rhomberg, N.E. Scangarella-Oman, and H.S. Sader. 2017. Gepotidacin (GSK2140944) in vitro activity against gram-positive and gram-negative bacteria. Antimicrob. Agents Chemother. 61. pii: e00468-17.
 - Jabes, D., C. Brunati, G. Candiani, S. Riva, G. Romano, S. Ma fioli, R. Rossi, M. Simone, E. Gaspari, and S. Donadio. 2014. Pharmacological properties o NAI-603, a welltolerated semisynthetic derivative o ramoplanin. Antimicrob. Agents Chemother. 58:1922–1929.
 - Van Liempd, S., D. Morrison, L. Sysmans, P. Nelis, and R. Mortishire-Smith. 2011. Development and validation o a higher-throughput e uilibrium dialysis assay or plasma protein binding. J. Lab. Autom. 16:56–67.
 - Theuretzbacher, U. 2016. Market watch: antibacterial innovation in European SMEs. Nat. Rev. Drug Discov. 15: 812–813.
 - Moir, D.T., T.J. Opperman, M.M. Butler, and T.L. Bowlin. 2012. New classes o antibiotics. Curr. Opin. Pharmacol. 12:535–544.
 - 23. Silver, L.L. 2011. Challenges o antibacterial discovery. Clin. Microbiol. Rev. 24:71–109.
 - Gilbert, N. 2018. Four stories o antibacterial breakthroughs. Nature 555:S5–S7.
 - 25. Scott, L.J. 2015. Dalbavancin: a review in acute bacterial skin and skin structure in ections. Drugs 75:1281–1291.
 - Markham, A. 2017. Delafloxacin: first global approval. Drugs 77:1481–1486.

- Álvarez, R., L.E. López Cortés, J. Molina, J.M. Cisneros, and J. Pachón. 2016. Optimizing the clinical use o vancomycin. Antimicrob. Agents Chemother. 60:2601–2609.
- Zhang, S., X. Sun, W. Chang, Y. Dai, and X. Ma. 2015. Systematic review and meta-analysis o the epidemiology o vancomycin-intermediate and heterogeneous vancomycinintermediate *A a h* ⁷ *c cc a e* isolates. PLoS One 10: e0136082.
- 29. Azhar, A., S. Rasool, A. Ha ue, S. Shan, M. Saeed, B. Ehsan, and A. Ha ue. 2017. Detection o high levels o resistance to linezolid and vancomycin in *Sea h* ⁷ c cc a e . J. Med. Microbiol. 66:1328–1331.
- Craig, W.A., and S.C. Ebert. 1989. Protein binding and its significance in antibacterial therapy. In ect. Dis. Clin. North Am. 3:407–414.
- Rolston, K.V., W. Wang, L. Nesher, J.R. Smith, M.J. Rybak, and R.A. Prince. 2017. Time-kill determination o the bactericidal activity o telavancin and vancomycin against clinical methicillin-resistant Sea h³ c cc a e isolates rom cancer patients. Diagn. Microbiol. In ect. Dis. 87:338–342.
- Li, R.C. 2000. New pharmacodynamic parameters or antimicrobial agents. Int. J. Antimicrob. Agents 13:229–235.
- 33. Lahiri, S.D., A. Kutschke, K. McCormack, and R.A. Alm. 2015. Insights into the mechanism o inhibition o novel bacterial topoisomerase inhibitors rom characterization o resistant mutants o Sea h i c cc a e . Antimicrob. Agents Chemother. 59:5278–5287.
- Zhao, M., A.J. Lepak, and D.R. Andes. 2016. Animal models in the pharmacokinetic/pharmacodynamic evaluation o antimicrobial agents. Bioorg. Med. Chem. 24:6390–6400.
- Putnam, K.P., D.W. Bombick, and D.J. Doolittle. 2002. Evaluation o eight in vitro assays or assessing the cytotoxicity o cigarette smoke condensate. Toxicol. In Vitro 16:599–607.
- Orme, I., J. Secrist, and S. Anathan. 2001. Search or new drugs or treatment o tuberculosis. Antimicrob. Agents Chemother. 45:1943–1946.
- Protopopova, M., C. Hanrahan and B. Nikonenko. 2005. Identification o a new antitubercular drug candidate, SQ109, rom a combinatorial library o 1,2-ethylenediamines. J. Antimicrob. Chemother. 56:968–974.
- Garcia, A., V. Bocanegra-Garcia, and J.P. Palma-Nicolas. 2012. Recent advances in antitubercular natural products. Eur. J. Med. Chem. 49:1–23.
- Ezeja, M.I., A.O. Anaga, and I.U. Asuzu. 2014. Acute and sub-chronic toxicity profile o methanol lea extract o *G a ia' gi & a'a* in rats. J. Ethnopharmacol. 151:1155– 1164.

Address correspondence to: \triangleleft AU21 Lei Shi \triangleleft AU22 Ge e a' H \blacklozenge a' f S \blacklozenge he Theat e C a d G a g h \triangleleft AU23 Chi a

E- ail: lucyshi622._921@163.com

Li-KA GeeaìH i•aì fS i•he ThecieC ad Gagh Chia

E- ail: lssalk@mail.sysu.edu.cn

AUTHOR QUERY FOR MDR-2019-0008-VER9-LAI_1P

- AU1: Please note that gene symbols in any article should be ormatted as per the gene nomenclature. Thus, please make sure that gene symbols, i any in this article, are italicized.
- AU2: Please identi y (highlight or circle) all authors' surnames or accurate indexing citations.
- AU3: Please check the correctness o authors' a filiations.
- AU4: The Publisher re uests or readability that no paragraph exceeds 15 typeset lines. Please check or long paragraphs and divide where needed.
- AU5: The sentence "Four rats were ..." has been rephrased or clarity. Please check.
- AU6: The sentence "It is estimated that 80,461 invasive MRSA in ections and >11,000 related deaths occurred in 2011 in the United States." has been rephrased or clarity. Please check.
- AU7: The sentence "The test medium or these strains was cation-adjusted Mueller-Hinton broth (CAMHB) except *S*. $a \ e$ were grown in CAMHB supplemented with 2% NaCl when the susceptibility o oxacillin was determined." has been rephrased or clarity. Please check.
- AU8: The sentence "The plate was incubated at 37°C or 16–20 hours, except the incubation time was 24 hours when the MIC o oxacillin and vancomycin was tested." has been rephrased or clarity. Please check.
- AU9: The sentence "And the e ect o serum concentration on MICs was estimated by supplementing CAMHB with 25%, 50%, and 75% (vol/vol) human serum (Sigma-Aldrich, China)." has been rephrased or clarity. Please check.
- AU10: Please check the sentence "An ali uot $100 \,\mu$ L content rom the wells containing concentrations higher than or e ual to the MIC was plated onto blood agar by the sur ace viable-count method." with respect to clarity.
- AU11: Both "log10" and " log_{10} " have been used. Please check or consistency.
- AU12: Please check the sentence "an ali uot o 100 μL rom all ZTW-41 concentration tubes was sampled" with respect to clarity.
- AU13: The sentence "Growth control was done with no antibiotic added to the studied strain." has been rephrased or clarity. Please check.
- AU14: The sentence "The treatment o ZTW-41 at 10 mg/kg resulted in a survival rate o mice comparable with vancomycin at 10 mg/kg." has been rephrased or clarity. Please check.
- AU15: The sentence "The bactericidal activity o ZTW-41 discussed in our study was presented in MBC results and timekill curves." has been rephrased or clarity. Please check.
- AU16: The sentence "To the best o our knowledge, the use o DNA gyrase/topoisomerase inhibitors, such as uinolones, has been associated with various kinds o adverse events." has been rephrased or clarity. Please check.
- AU17: In Re . 5, please check the edits.
- AU18: In Re . 6, please provide the volume number.
- AU19: In Re . 14, please mention the location o the publisher.
- AU20: In Re . 15, please mention the publisher name and location.
- AU21: Please confirm the corresponding authors' address.
- AU22: Please mention the degree abbreviation (e.g., MS, MD, PhD) o the corresponding authors "Lei Shi" and "Lin-Kun An."
- AU23: Please provide the zip code in the address o corresponding authors "Lei Shi" and "Lin-Kun An."
- AU24: "*" is not ound in the artwork o Figure 6. Please check.
- AU25: "*" and "**" are not ound in the artwork o Figure 7. Please check.