

Fitoterapia

journal homepage: www.elsevier.com/locate/fitote

Sesquiterpenoids from the aerial parts of *Conyza japonica* and their inhibitory activity against nitric oxide production

Long-Gao Xiao^a, Si-Chen Zhang^a, Yu Zhang^a, Lu Liu^a, Hong-Li Zhang^a, Qian Yu^{a,b,*}, Lin-Kun An^{a,c,*}

^a School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China

^b State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guangxi 541004, China

^c Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou 510006, China

ARTICLE INFO

Keywords: Conyza japonica Sesquiterpenoids Anti-inflammatory activity Cytotoxicity

ABSTRACT

Four new sesquiterpenoids, conyterpenols A – D (1–4), along with nineteen known analogues (5–23) were isolated from the aerial parts of *Conyza japonica*. The structures of 1–4 were determined through spectroscopic analysis, while their absolute configurations were determined by comparison of calculated and experimental electronic circular dichroism (ECD) spectra. Conyterpenol D (4) was a new type of sesquiterpenoid with a sevenmembered lactone ring. Compounds 1–23 were evaluated for their inhibitory activity against LPS-induced nitric oxide production in RAW264.7 macrophages and cytotoxicity against human hepatoma cell line (HepG2) and human breast adenocarcinoma cell line (MCF-7). Compounds 3, 4, and 12 displayed moderate inhibition against NO production with IC₅₀ values in the range of 26.4–33.6 μ M. And all compounds showed no obvious cytotoxicity against these two cancer cell lines at 100 μ M.

1. Introduction

Conyza japonica (Thunb.) Less., a species of family Compositae, is an annual or biennial herb widely distributed in the southern regions of China. The plant *C. japonica* has a long history of medicinal use for treating various diseases such as pneumonia, pleurisy, laryngitis and keratitis in children [1]. Previous phytochemical researches on *C. japonica* showed there are a variety of constituents such as strictic acids, flavonoids and their glycosides [2,3], phenylpropanoid glycosides [4], triterpenoid saponins [5], diterpenoids and their glycosides [6]. The research on the constituents of *C. japonica* has attracted our attention because its secondary metabolites mainly contain terpenoids, which show a variety of biological activities, including anti-inflammatory, antitumor, antioxidant and against acute gastric ulcer [7–10].

Our phytochemical research was carried out on the 95% EtOH extract of the aerial parts of *C. japonica*, which resulted in the isolation of four new sesquiterpenoids (1–4) along with nineteen known analogues. The isolated compounds were screened for their inhibitory e ects against LPS-induced nitric oxide (NO) production in RAW264.7 macrophages and their cytotoxicity against HepG2 and MCF-7 cancer cell lines. Herein, we report the isolation, structural elucidation, and biological evaluation of these sesquiterpenoids.

2. Experimental

2.1. General experiments

Optical rotations were measured on a Perkin-Elmer 341 polarimeter (PerkinElmer, Inc. Shelton, USA). UV spectra were recorded on a Shimadzu UV-2450 spectrophotometer. CD spectraC6Z=9v*II)ki-Waofi)-ecseIIEé

Collection. HepG2 and MCF-7 cell lines were purchased from China Center for Type Culture Collection in Wuhan.

2.2. Plant material

The aerial parts of *C. japonica* were collected in Quanzhou, Fujian Province, People's Republic of China in May 2018, and identified by Dr. Gui-Hua Tang from the School of Pharmaceutical Sciences, Sun Yat-sen University. A voucher specimen (No. 2018051101) was deposited at the School of Pharmaceutical Sciences, Sun Yat-sen University.

2.3. Extraction and isolation

The air-dried and powdered aerial parts of C. japonica (20.0 kg) were extracted with 95% EtOH (40 I \times 3) at room temperature to obtain a crude extract (971 g), which was suspended in 10 I water and then extracted continuously with petroleum ether (10 I \times 3) and ethyl acetate (10 I \times 3) to a ord the petroleum ether extract (324.9 g) and EtOAc extract (85.2 g). The petroleum ether extract was subjected to column chromatography over silica gel with petroleum ether - EtOAc mixture (gradient from 1:0 to 0:1, v/v) and CHCl₃ – MeOH (gradient from 1:0 to 0:1, v/v) to give twelve fractions (Fr.1 - Fr.12). Fr.3 was separated using silica gel column eluting with petroleum ether - EtOAc and further purified by using Sephadex LH-20 column (CH₂Cl₂ - MeOH, 1:1, v/v) to a ord 22 (13.0 mg). Fr.4 was separated using silica gel column eluting with petroleum ether-EtOAc further purified by using semi-preparative HPLC (MeOH/H₂O, 80% 100%, 3.0 ml/min) to a ord **17** (20.8 mg, $t_R = 18.5$ min). Fr.5 was separated using silica gel column eluting with petroleum ether-EtOAc and further purified by using semi-preparative HPLC (82% MeOH in H2O, 3.0 ml/min) to yield 12 (9.4 mg, $t_R = 26.0$ min). Fr.6 was separated by MCI gel column (MeOH/H₂O, 50% 100%, v/v) followed by silica gel column (petroleum ether - CH₂Cl₂, 2:1, v/v) and Sephadex LH-20 column (MeOH) to yield 16 (9.3 mg). Fr.7 was separated by MCI gel column (MeOH/H₂O, 50% 100%, v

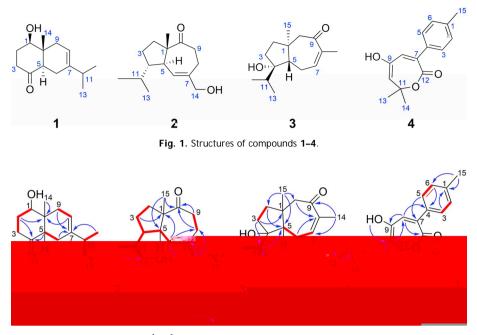


Fig. 2. The key ¹H–¹H COSY and HMBC correlations of compounds 1–4.

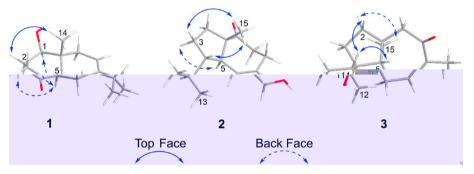


Fig. 3. The key NOESY correlations of compounds 1-3.

Conyterpenol B (2): Colorless oil; $]_D^{20} - 43.1$ (*c* 0.26, MeOH); UV (MeOH) max (log ε) 202 (3.65) nm, 193(2.79) nm; IR (KBr) ν_{max} 3400, 2954, 2931, 2872, 1687, 1610, 1499, 1453, 1373, 1261, 1054, 702 cm⁻¹; NMR (CDCl₃) data, see Tables 1 and 2; HRESIMS *m/z* 259.1679 [M + Na]⁺ (calcd for C₁₅H₂₄O₂Na, 259.1669).

Convterpenol C (3): Colorless oil; $[]_D^{20} - 27.3$ (c 0.30, MeOH); UV (MeOH) max (log e) 240 (3.58) nm, 201(3.32) nm, 197(3.19) nm; IR (KBr) ν_{max} 3483, 2957, 2928, 1645, 1455, 1385, 1283, 1040, 816 cm⁻¹; NMR (CDCI₃) data, see Tables 1 and 2; HRESIMS *m/z* 259.1668 [M + Na]⁺ (calcd for C₁₅H₂₄O₂Na, 259.1669).

Converpenol D (4): Light yellow oil; UV (MeOH) $_{max}$ (log ε) 202 (3.95) nm, 317 (3.93) nm, 231 (3.61) nm; IR (KBr) ν_{max} 3428, 2925, 2855, 1762, 1664, 1611, 1521, 1458, 1369, 1096, 961, 824 cm⁻¹; NMR (CDCl₃ and DMSO *d*₆) data see Tables 1 and 2; HRESIMS *m*/*z* 267.0999 [M + Na]⁺ (calcd for C₁₅H₁₆O₃Na, 267.0992).

2.5. Anti-inflammatory assay

Compounds **1–23** were tested for their anti-inflammatory activity in vitro by measuring the LPS-induced NO production in RAW 264.7 mouse macrophages [11]. Cell viability was determined by MTT method at 60 μ M, an initial concentration. Cells were treated with compounds in di erent concentrations with or without LPS (1 μ g/ml) for 24 h in 96-well culture plates. The supernatant was collected and then mixed with an equal volume of Griess reagent I and Griess reagent II, the absorbance of the samples was read at 540 nm with a microplate reader. Quercetin

was used as a positive control and DMSO was set as blank control in experiments. Experiments were operated in triplicate. The results were described as mean \pm SD of three independent experiments.

2.6. MTT assay

Cytotoxic activity of the compounds against HepG2 and MCF-7 cell lines was analyzed by MTT assay as previously reported [12,13]. Briefly, the cancer cells were treated with the compounds at concentrations ranging from 10^{-8} to 10^{-4} M, after incubation for 72 h at 37 °C, the MTT solution (20 µl, 2.5 mg/ml) in PBS was fed to each well of the culture plate. After 4 h incubation, the formazan crystal formed in the well was dissolved with 100 ml DMSO for optical density reading at 570 nm. Camptothecin was used as a positive control and DMSO was set as blank control in experiments, and the experiments were conducted for three independent replicates.

3. Results and discussion

The petroleum ether extract from the aerial parts of *C. japonica* was fractionated by silica gel CC and further purified by various columns to obtain twenty-three sesquiterpenoids, including four new sesquiterpenoids, conyterpenols A - D (1–4) (Fig. 1) and nineteen known sesquiterpenoids (5–23) (Fig. S1), which were identified as 1 ,11-dihydroxy-5-eudesmene (5) [14], 1 ,6 -dihydroxy-4(15)-eudesmane (6) [15], 6 ,14-epoxyeudesm-4(15)-en-1 -ol (7) [16], 3-epichenopotriol (8) [17], 7-epi-

L.-G. Xiao, et al.

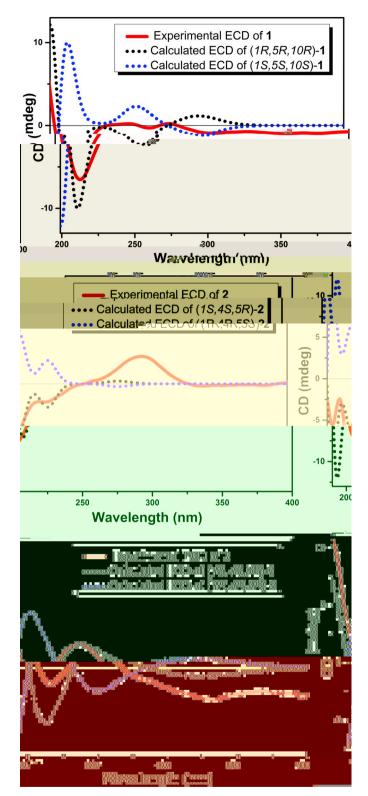


Fig. 4. Experimental and calculated ECD spectra for 1-3 in MeOH.

eudesm-4(15)-ene-1 ,6 -diol (9) [18], 4(15)-eudesmene-1 ,5 -diol (10) [19], oplodiol (11) [20], schisansphenins A (12) [21], 10 ,15-hydroxy-cadinol (13) [22], artabotrol (14) [23], (+)-aphanamol I (15) [24], macrocarp-11(15)-en-8-ol (16) [25], spathulenol (17) [26], 4 ,7 -aromodendranediol (18) [27], oplopanone (19) [20], $(7R^*)$ -opposit-4(15)-ene-1 ,7-diol (20) [16], dehydrovomifoliol (21) [28], inflatenone (22) [29], pubescone (23) [30], respectively, by comparing the detailed NMR spectroscopic data with those reported in the literature.

Compound 1 was obtained as colorless oil. Its HRESIMS gave an ion peak at m/z 245.1524 [M + Na]⁺, suggesting a molecular formula of $C_{14}H_{22}O_2$ (calcd for $C_{14}H_{22}O_2Na$, 245.1512) with four degrees of unsaturation. The IR spectrum showed absorption of hydroxy group (3422 cm^{-1}) and carbonyl group (1705 cm^{-1}) . The ¹H, ¹³C NMR (Tables 1 and 2) and HSQC spectra showed one carbonyl carbon at ___ 212.3 (C-4), one double bond [H 5.35 (1H, s, H-8), C 115.6 (C-8), 140.8 (C-7)], one oxymethine group [H 3.84 (1H, d, J = 11.7 Hz, H-1), C 76.3 (C-1)],three methyl groups [H 1.02 (3H, m, H-12), H 1.02 (3H, m, H-13), H 0.69 (3H, s, H-14), c 20.6 (C-12), c 20.1 (C-13), c 10.4 (C-14)]. The carbonyl group, and one double bond unit accounted for two degrees of unsaturation. The remaining two degrees of unsaturation were due to a bicyclic carbon skeleton. The ¹H–¹H COSY correlations between H-1/H-2/H-3, H-5/H-6, H-8/H-9, H-11/H-12, H-11/H-13 as drawn in red bold bonds (Fig. 2) built up four spin-spin coupling systems, which could be linked together via three quaternary carbons (C-4, C-7, and C-10) by the HMBC correlations from H-2 and H-5 to C-4 (_c 212.3), H-6, H-9, and H-13 to C-7 (c 140.8), H-2, H-8, and H-14 to C-10 (c 40.7). Following the establishment of the planar structure, the relative configuration of compound **1** was then assigned by analysis of NOESY spectrum (Fig. 3). The NOESY correlations between H-1/H-5, H-5/H-2a (_H 2.04), and H-14/H-2b ($_{\rm H}$ 1.85) indicated that Me-14 and H-2b were on the same side of the ring, while H-4, H-5, and H-2a on the opposite side. In order to establish the absolute configuration of compound 1, the ECD spectrum of 1 was calculated by time-dependent density functional theory (TDDFT) means at the B3LYP/6-311 + G(d) level in MeOH [31]. The results exhibited that the experimental CD curve matched well with the calculated ECD of (1R,5R,10R)-isomer (Fig. 4). Therefore, the compound 1 could be identified as (1R,5R,10R)-1-hydroxy-7-isopropyI-10-methyl-1,2,5,6,9,10-hexahydronaphthalen-4(2H)-one and the trivial name conyterpenol A was given for compound 1.

Compound 2 was obtained as colorless oil. Its HRESIMS spectrum gave an ion peak at m/z 259.1679 [M + Na]⁺ suggesting a molecular formula of C₁₅H₂₄O₂ (calcd for C₁₅H₂₄O₂Na, 259.1669) with four degrees of unsaturation. The IR spectrum revealed the presence of hydroxyl group (3400 cm^{-1}) and carbonyl group (1687 cm^{-1}) . The ¹H, ¹³C NMR (Tables 1 and 2) and HSQC spectra of 2 showed one carbonyl carbon at ____ 215.1 (C-10), one double bond [H 5.70 (1H, s, H-6), C 129.3 (C-6) and 140.6 (C-7)], one hydroxymethyl group [H 4.13 (2H, s, H-14), C 67.6 (C-14)], three methyl groups [$_{\rm H}$ 0.89 (3H, d, J = 6.7 Hz, H-12), $_{\rm H}$ 0.82 (3H, d, J = 6.7 Hz, H-13), H 1.02 (3H, s, H-15), C 21.8 (C-12), C 18.3 (C-13), C 19.4 (C-15)]. The NMR data suggested that compound 2 was an isodaucane-type sesquiterpenoid. The COSY spectrum showed correlations between H-2/H-3/H-4, H-4/H-11/ H-13, H-12/H-11/H-13, H-5/H-6, H-8/ H-9 as drawn in red bold bonds (Fig. 2). The HMBC spectrum showed correlations from H-3 and H-6 to C-1 ($_{\rm C}$ 59.8), H-6 and H-14 to C-8 ($_{\rm C}$ 26.1), H-6 to C-14 ($_{\rm C}$ 67.6), H-14 to C-7 ($_{\rm C}$ 140.6), H-8, H-9, and H-15 to C-10 (_C 215.1). The NMR spectra indicated that compounds 2 and 15 shared the same planar structure with slight di erence in the ¹³C NMR spectrum caused by variation in configuration. The relative configuration of compound 2 was determined by NOESY spectra (Fig. 3). The NOESY correlations between H-15/H-3b ($_{\rm H}$ 1.77), H-15/H-4, and H-5/H-3a ($_{\rm H}$ 1.44) indicated that Me-15, H-3b, and H-4 were on the same side of the ring, while H-5 and H-3a on the opposite side. The absolute configuration of 2 was identified as (15,45,5R)-isomer by comparison of the calculated and experimental ECD spectra (Fig. 4). Thus, the compound 2 could be defined as (1S,4S,5R)-1-methyl-4-isopropyl-7-hydroxymethyl-1,2,3,5,8,9hexahydroazulen-10(1H)-one (Fig. 1), and convterpenol B as trivial name.

Compound **3** was obtained as colorless oil. Its HRESIMS spectrum gave an ion peak at m/z 259.1668 [M + Na]⁺ suggesting a molecular formula of C₁₅H₂₄O₂ (calcd for C₁₅H₂₄O₂Na, 259.1669) with four degrees of unsaturation. The two distinct absorption bands at 3483 and 1645 cm⁻¹ in the IR spectrum demonstrated the existence of hydroxyl and , -unsaturated carbonyl groups. The ¹H, ¹³C NMR (Tables 1 and 2) and HSQC spectra of **3** showed one carbonyl carbon _C 203.0 (C-9), one double bond [_H 6.38 (1H, d, J = 7.0 Hz, H-7), _C 137.4 (C-7), and 139.1

(C-8)], one oxygenated guaternary carbon _c 85.7 (C-4), four methyl groups [H 0.92 (3H, d, J = 6.7 Hz, H-12), H 0.96 (3H, d, J = 6.7 Hz, H 0.96 (3H, d, J = 6.7 Hz, H-12), H 0.96 (3H, d, J = 6.7 Hz, H 0.96 (3H, d, J = 613), _H 1.86 (3H, s, H-14), _H 1.09 (3H, s, H-15), _C 17.4 (C-12), _C 18.2 (C-13), $_{\rm C}$ 22.2 (C-14), $_{\rm C}$ 20.1 (C-15)]. The NMR data suggested that compound 3 was a daucane-type sesquiterpenoid and closely comparable to the known compound Trichocarotin A [32]. The di erence between the two compounds is that compound 3 bears a methylene group instead of the oxymethine group in Trichocarotin A. The COSY correlations between H-3/H-2 as drawn in red bold bonds (Fig. 2) and the HMBC correlations from H-3 to C-1 ($_{\rm C}$ 40.9), H-3 to C-11 ($_{\rm C}$ 36.9) also confirmed this variety. Thus, the planar structure of 3 was elucidated as shown in Fig. 1. The relative configuration of compound 3 was determined by NOESY spectra (Fig. 3). The NOESY correlations between H-5/H-11, H-11/H-2b ($_{\rm H}$ 1.32), and, H-15/H-2a ($_{\rm H}$ 1.66) indicated that Me-15 and H-2a were on the same side of the ring, while the isopropyl, H-5 and H-2b on the opposite side. By comparison of the experimental and calculated ECD spectra (Fig. 4), compound 3 could be identified as (15,45,55)-1,8-dimethyl-4-isopropyl-4-hydroxy-1,2,3,5,6,10-hexahy-droazulen-9(1H)-one (Fig. 1), and converpenol C as trival name.

Compound 4 was obtained as light-yellow oil. The HRESIMS spectrum

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University) (CMEMR2017-B04).

Appendix A. Supplementary data

Experimental details including IR, CD, HRESIMS, and NMR (¹H NMR, ¹³C NMR, DEPT135, ¹H–¹H COSY, HSQC, and HMBC) spectra of compounds **1–4**, and NOESY spectra of compounds **1–3**. Supplementary data to this article can be found online at https://doi.org/10.1016/j. fitote.2020.104473.

References

- Flora of China Editorial Committee of Chinese Academy of Sciences, Flora of China, 75 Science Press, Beijing, 1979.
- [2] U.C. Pandey, A.K. Singhal, N.C. Barua, R.P. Sharma, J.N. Baruah, K. Watanabe, P. Kulanthaivel, W. Herz, Stereochemistry of strictic acid and related Furano-diterpenes from *Conyza japonica* and *Grangea maderaspatana*, Phytochemistry 23 (1984) 391–397, https://doi.org/10.1016/S0031-9422(00)80338-6.
- [3] L. Qiao, Y.F. Su, C.Y. Guo, X.Y. Xie, M. Que, L. Chen, Chemical constituents of *Conyza japonica*, Chinese Tradit, Herb. Drugs. 45 (2014) 1211–1218, https://doi. org/10.7501/j.issn.0253-2670.2014.09.003.
- [4] J. Hu, X. Shi, W. Ding, J. Chen, C. Li, Phenylpropanoid glycosides from *Conyza japonica*, Chem. Nat. Compd. 48 (2012) 782–784, https://doi.org/10.1007/s10600-012-0381-3.
- [5] S.L. Yan, Y.F. Su, X.Y. Xie, C.Y. Guo, M. Que, L. Chen, Two new triterpenoid saponins from *Conyza japonica*, Chinese Tradit, Herb. Drugs. 45 (2014) 23–27, https://doi.org/10.7501/j.issn.0253-2670.2014.01.004.
- [6] J. Hu, Y. Song, H. Li, X. Mao, X. Shi, Z. Liu, Diterpene glycosides from the dry fronds of *Conyza japonica*, Helv. Chim. Acta. 98 (2015) 986–993, https://doi.org/10.1002/ hlca.201400386.
- [7] S. Adebayo, M. Ondua, L. Shai, S. Lebelo, Inhibition of nitric oxide production and free radical scavenging activities of four South African medicinal plants, J. Inflamm. Res. 12 (2019) 195–203, https://doi.org/10.2147/jir.s199377.
- [8] E. Hayet, M. Maha, A. Samia, M.M. Ali, B. Souhir, K. Abderaouf, Z. Mighri, A. Mahjoub, Antibacterial, antioxidant and cytotoxic activities of extracts of *Conyza* canadensis (L.) Cronquist growing in Tunisia, Med. Chem. Res. 18 (2009) 447–454, https://doi.org/10.1007/s00044-008-9141-0.
- [9] L. Ma, H. Liu, L. Meng, P. Qin, B. Zhang, Y. Li, S. Man, Z. Liu, Z. Liu, A. Diao, Evaluation of the anti-cancer activity of the triterpenoidal saponin fraction isolated from the traditional Chinese medicine *Conyza blinii* H. Lév, RSC Adv. 7 (2017) 3408–3412, https://doi.org/10.1039/c6ra26361e.
- [10] L. Ma, J. Liu, The protective activity of *Conyza blinii* saponin against acute gastric ulcer induced by ethanol, J. Ethnopharmacol. 158 (2014) 358–363, https://doi. org/10.1016/j.jep.2014.10.052.
- [11] G. Zhan, J. Zhou, R. Liu, T. Liu, G. Guo, J. Wang, M. Xiang, Y. Xue, Z. Luo, Y. Zhang, G. Yao, Galanthamine, plicamine, and secoplicamine alkaloids from *Zephyranthes candida* and their anti-acetylcholinesterase and anti-inflammatory activities, J. Nat. Prod. 79 (2016) 760–766, https://doi.org/10.1021/acs.jnatprod.5b00681.
- [12] Q. Yu, Y. Chen, H. Yang, H. Zhang, K. Agama, Y. Pommier, The antitumor activity of CYB-L10, a human topoisomerase IB catalytic inhibitor, J. Enzyme Inhib. Med. Chem. 34 (2019) 818–822, https://doi.org/10.1080/14756366.2018.1516651.
- [13] K.F. Zhai, H. Duan, C.Y. Cui, Y.Y. Cao, J.L. Si, H.J. Yang, Y.C. Wang, W.G. Cao, G.Z. Gao, Z.J. Wei, Liquiritin from *Glycyrrhiza uralensis* attenuating rheumatoid arthritis via reducing inflammation, suppressing angiogenesis, and inhibiting MAPK signaling pathway, J. Agric. Food Chem. 67 (2019) 2856–2864, https://doi.org/10.

1021/acs.jafc.9b00185.

- [14] B. Bläs, J. Zapp, H. Becker, Ent-clerodane diterpenes and other constituents from the liverwort Adelanthus lindenbergianus (Lehm.) Mitt, Phytochemistry 65 (2004) 127–137, https://doi.org/10.1016/S0031-9422(03)00387-X.
- [15] G.D. Brown, G.Y. Liang, L.K. Sy, Terpenoids from the seeds of Artemisia annua, Phytochemistry 64 (2003) 303–323, https://doi.org/10.1016/S0031-9422(03) 00294-2.
- [16] T. Iijima, Y. Yaoita, M. Kikuchi, Five new sesquiterpenoids and a new diterpenoid from *Erigeron annuus* (L.) Pers., *Erigeron philadelphicus* L. and *Erigeron sumatrensis* Retz, Chem. Pharm. Bull. 51 (2003) 545–549, https://doi.org/10.1248/cpb.51.545.
- [17] J. de PascualT, I.S. Bellido, M.S. González, Chenopodiaceae components polyoxigenated sesquiterpenes from *Chenopodium botrys*, Tetrahedron 36 (1980) 371–376, https://doi.org/10.1016/0040-4020(80)87004-9.
- [18] H.J. Zhang, G.T. Tan, B.D. Santarsiero, A.D. Mesecar, N. Van Hung, N.M. Cuong, D.D. Soejarto, J.M. Pezzuto, H.H.S. Fong, New sesquiterpenes from *Litsea verticillata*, J. Nat. Prod. 66 (2003) 609–615, https://doi.org/10.1021/np020508a.
- [19] Z. Sun, B. Chen, S. Zhang, C. Hu, Four new eudesmanes from *Caragana intermedia* and their biological activities, J. Nat. Prod. 67 (2004) 1975–1979, https://doi.org/ 10.1021/np049866z.
- [20] W. Herz, K. Watanabe, Sesquiterpene alcohols and triterpenoids from *Liatris microcephala*, Phytochemistry 22 (1983) 1457–1459, https://doi.org/10.1016/S0031-9422(00)84035-2.
- [21] K. Mendbayar, I.W. Lo, C.C. Liaw, Y.C. Lin, A.E. Fazarya, Y.C. Kuo, B.H. Chiang, H.J. Wang, S.S. Liou, Y.C. Shen, New and bioactive sesquiterpenes from *Schisandra sphenanthera*, Helv. Chim. Acta. 94 (2011), https://doi.org/10.1002/hlca. 201100205.
- [22] A.S. Feliciano, M. Medarde, M. Gordaliza, E. Del Olmo, J.M. Miguel del Corral, Sesquiterpenoids and phenolics of *Pulicaria paludosa*, Phytochemistry 28 (1989) 2717–2721, https://doi.org/10.1016/S0031-9422(00)98074-9.
- [23] T.C. Fleischer, R.D. Waigh, P.G. Waterman, Pogostol O-methyl ether and artabotrol: two novel sesquiterpenes from the stem bark of *Artabotrys stenopetalus*, J. Nat. Prod. 60 (1997) 1054–1056, https://doi.org/10.1021/np970282p.
- [24] T. Hansson, B. Wickberg, A short enantiospecific route to isodaucane sesquiterpenes from limonene. On the absolute configuration of (+)-Aphanamol I and II, J. Org. Chem. 57 (1992) 5370–5376, https://doi.org/10.1021/jo00046a018.
- [25] M.H. Chaves, J.H.G. Lago, N.F. Roque, Macrocarpane, a new sesquiterpene skeleton from the leaves of *Porcelia macrocarpa*, J. Braz. Chem. Soc. 14 (2003) 16–19, https://doi.org/10.1590/S0103-50532003000100004.
- [26] Y. Cheng, M. Lei, J. Zhou, Sesquiterpenoids from *Michelia lacei* and their chemotaxonomic significance, Acta Bot. Yunnanica 24 (2002) 129–132, https://doi.org/ 10.3969/j.issn.2095-0845.2002.01.021.
- S.H. Qi, D.G. Wu, Y.B. Ma, X.D. Luo, The chemical constituents of *Munronia henryi*, J. Asian Nat. Prod. Res. 5 (2003) 215–221, https://doi.org/10.1080/ 1028602031000093384.
- [28] H. Knapp, C. Weigand, J. Gloser, P. Winterhalter, 2-Hydroxy-2,6,10,10-tetramethyl-1-oxaspiro[4.5] dec-6-en-8-one: precursor of 8,9-dehydrotheaspirone in white-fleshed nectarines, J. Agric. Food Chem. 45 (1997) 1309–1313, https://doi.org/10. 1021/jf960598n.
- [29] M. Tori, T. Nagai, Y. Asakawa, S. Huneck, K. Ogawa, Terpenoids from six lophoziaceae liverworts, Phytochemistry 34 (1993) 181–190, https://doi.org/10.1016/ S0031-9422(00)90803-3.
- [30] R. Wang, L.-L. Liu, Y.-P. Shi, Pubescone, A novel 11(7 6)Abeo-14-norcarabrane sesquiterpenoid from *Siegesbeckia pubescens*, Helv. Chim. Acta. 93 (2010) 2081–2085, https://doi.org/10.1002/hlca.201000034.
- [31] A.E. Nugroho, H. Morita, Circular dichroism calculation for natural products, J. Nat. Med. 68 (2014) 1–10, https://doi.org/10.1007/s11418-013-0768-x.
- [32] Z.Z. Shi, S.T. Fang, F.P. Miao, X.L. Yin, N.Y. Ji, Trichocarotins A-H and trichocadinin A, nine sesquiterpenes from the marine-alga-epiphytic fungus *Trichoderma virens*, Bioorg. Chem. 81 (2018) 319–325, https://doi.org/10.1016/j.bioorg.2018. 08.027.