November 22, 2018

Volume 61 • Number 22

pubs.acs.org/jmm

Medicinal Chemistry

acc org

Discovery, Synthesis, and Evaluation of Oxynitidine Derivatives as Dual Inhibitors of DNA Topoisomerase IB (TOP1) and Tyrosyl-DNA Phosphodiesterase 1 (TDP1), and Potential Antitumor Agents

Supporting Information

■ INTRODUCTION

उन्द्रत् (आश्र.) DU145	A549	Huh7	Cpd.	n	R	inh	or me	= in	hibition ^b	∆ரிங் ('€) ^{∧d} F10T -	HCT116	CCRF-CEM
$.021 \pm 0.016$	0.21 ± 0.069	0.099 ± 0.017	1	<i> e</i>	/	-	++++		ND	ND	0.009 ± 0.001	0.007 ± 0.003 0
*26.5z±£5.4	11642232110394	~ 39.38<u></u>20.20	>1	.00 '	6	<i>.</i>			<u></u> /U	N	<u></u> √47≋	ພາກຊ?/ຍ∉ 4!3ອອາ≦
	- • • • • • • • • • • • • • • • • • • •	6 <u> </u>			• • • • • • • • • • • • • • • • • • •	<u>ه</u>				<u> </u>		* "5:07#0:35
	/7.552=53-4	2 -100	.13	A4=-,7 , 97	.1/7}-	32	OI	H	للم.	_س		'F3%+4'1
0.029 ± 0.00	$3 0.018 \pm 0.00$	0.79 ± 0.11	0.1	2 ± 0.015	19a	2			+++	12%	0.5	0.076 ± 0.007
3.82 + 0.30	148 ± 0.94			38+213	19b	3	NM	e ₂	. +	0		1 27 + 0 10
0-29±0.019	VUGAL ISARE	193794 ± 0.19235	3.15	± 2.31	5.00× 03.	₽	208			^ ₇	^ U	0.21 0.3.010
11.79 ± 1.14	15.24 ± 1.28	8.21 ± 1.99	36.72	± 8.97	48.82 ± 45.	58	20b	3	NEt ₂	+	0	1.3
		- 160	wit <u>tin</u> e	(p		10-10-10-	€ĝ#S7=		9.15 - 7. 83			

Table 1. continued

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
43a - 2 = -43a - 2 = -43a43a43a43a43a43a43a43a43a43a43a43a43	
$13 21 + 4 32 \qquad 42a \qquad 2 \qquad \bigcirc \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 35 49 + 12 23 \qquad 335 + 0.25 \qquad 44 70 + 2.06 \qquad 46 27 + 32.96$	
$\frac{1}{10} \frac{1}{2} \frac{1}{10} $	

RESULTS AND DISCUSSION Hit Discovery for TOP1 Inhibitor.

57,58 fi 1 , 900 1-Α . 1, (6, 1,). 1 59 1 \mathbf{fi} ⁶⁰ B 1 A 1-6 (1, 1). ff 6 48 (2,). 17, 35, 79 6 48 , $_{\mathrm{ff}}$ 1 ff $_{\mathrm{ff}}$ 12 1.^{61–63} B A) A (6 6-10 $\begin{array}{c} 10 \\ A A C A A' \overset{\mathbf{h}}{} \overset{\mathbf{R}}{} A A C A A - TAMRA \\ \end{array}$ (5'-FAM-3') (ΔT) 6 А A. А 5-8 °C.⁶⁴ (0.4 °C) 6 ΔT) 49 (2 1),⁶⁵ 5.8 °C (ΔT 6 Α . ff 1 Chemistry. , 1 .66 2-2--4,5-3-12b 100% 12a 1), (12b 12a () 13a 13b, \mathbf{fi} 14, 5-

d 1,3 3- -1- . - ,⁶⁷

Scheme 2. Synthesis of Compounds 39a/b-45a/b^a

; () () $_{2^{\prime}}$ 14, () $_{2^{\prime}}$ ($_{3^{\prime}}$) $_{3^{\prime}}$ C, 80 °C, () C , $_{3^{\prime}}$ (C) $_{6^{\prime}}$, -60 °C; () C, A , ; () C $_{3^{\prime}}$, 100 °C; () C $_{2^{\prime}}$ C $_{2^{\prime}}$, :() , ₂ ,80 ć °C; () (C C)₂, B (C ₂)₃B, , 70 °Č; () А, , (), , ₂C ₃, , . , ;() ,

39a-45a

,

 $36\,{\rm fi}$

37,⁷²

39a-45a.

,

С

46

2-

37

`**R** , ¹

Figure 4.

, 6-

2,

,

TOP1 Inhibition. A

1

73

32 3'-

DOI: 10.1021/acs.jmedchem.8b00639 J. Med. Chem. 2018, 61, 9908–9930

1-

А

1

;

+,

1

Α

75%

100, 10,

A , 32b3- 5-1 (++). , 40a (+) 43a (+/0), .

> 1- A . A 1- A- (B

1 4).⁷⁵ C 5 . A ff 19a А 1 -1+1fl B-19a А A-C-(C A), (). _ 19a (2.9^A) A. A , A 364, 19a 1.

 145 C0.1,
 364
 1.

 145 C0.1
 19a (
 4).

718 (3.6 ^A), A 722 (3.7 ^A) 1. TDP1 Inhibition. B 1 1-A 1 54-56 1 ⁵⁰ A fl fl (5'-FAM--A A C AAAA AC -BHQ-3') 100 µ , 19a, 21b, 22b, 39a/b, 40a/b, 41a/b, 42b, 44a/b, 1 12% 98% (1). (+++) 1 1 (12% 100 19a (+++) μ). 1 39 1 100 μ 39a/b, 40a/b, 41a/b, (>50%) 42b C₅₀ 2), (1. 50% С C₅₀ 6A). 41a $7.0 \pm$ 1.4 µ (1 42b, 39a/b, 40a/b, 41a/b, 5'-³² --, 14 .76 3'-

Table 2. TDP1	I In Tbition of t 🗣 A	ctive Compounds	(263	493)		> 77	
		$C_{50} (\mu)^a$	1 -		(B I,	R)."	
	fl	-	-	41a		6B.	
39a	24 ± 0.80	16 ± 0.40	41a		А		
39b	18 ± 1.7	13 ± 4.0			259	,	
40a	58 ± 20	40 ± 14	$\pi - \pi$			1	(
40b	15 ± 2.7	27 ± 5.2	6B),				
41a	7.0 ± 1.4	8.2 ± 1.3		1		(3,
41b	20 ± 1.7	21 ± 1.2).			
42b	19 ± 4.8	20 ± 5.4					
^a C ₅₀	fi				493 (3.3 ^A)	A 283	(3.1 ^A),
50%						1	•
	•		, 1,	3-		538,	
C 41	la	1	358		3.7 Å		
(C ₅₀	$= 8.2 \mu$).	1	1				
X 30	6C.	10	Interaction	with DNA			
	.52	, 39a/b, 40b, 41a/b, (111 µ)		10	A, ` R		ΔT
		- 1				1.	۲R
		_	fi			10	2μ
<i>,</i> .	1			27b		ΔT	1.9 [°] °C.
(2	265 495)		1	19	a	ΔT	
	٨						

Table 3. Cytotoxicity of 19a against Individual NCI-60 Cell Lines

		$_{50} (\mu^{-})^{a}$			₅₀ (µ)
	ь	0.145		C 205	0.144
	CC, -C	0.144		CC-2998	0.63
	-562	0.156		C 116	0.0855
	-4	0.118		C -15	0.427
	-8226	0.14		29	0.149
	-1	0.0669		12	0.875
-	A549/A CC	0.244		-620	0.345
		0.79		786-0	0.166
	-62	0.18		A498	0.347
	-92	0.558		AC	0.16
	C - 226	0.512		CA -1	0.186
	C - 23	0.201		393	0.516
	C - 322	0.428		12C	0.258
	C - 460	0.141		-10	0.722
	C - 522	0.076		-31	0.157
С	-268	0.283		C 7	0.118
	-295	0.177		A- B-231/A CC	0.826
	-539	0.186		578	1.86
	B-19	0.233		B -549	0.291
	B-75	0.239		-47	0.111
	251	0.14		A- B-468	0.14
		0.112		R 1	0.312
	A -3	0.284		ĈĄ3	0.582
	14	0.149		CA 4	0.557
	A- B-435	0.395		CA 5	0.595
	2	0.886		CA 8	0.554
	28	0.861		C /A	0.29
	5	0.181		3	0.24
	ACC-257	0.528		C-3	0.317
	ACC-62	0.0966		-145	0.215
a_{50} fi	:		50%		2

05 °C.

Cytotoxicity Assays.

.

 \mathbf{fi} (CC (C 116), -C), -145), (A549), (7) (72 fi -0.01 100 μ . A , , fi

50

С 6, 17a/b 19a/b-25a/b \mathbf{fi} 1 . C 19a 1 (+++) fi 50 , $(0.076 \ \mu$ C 116, 0.029 μ CC_{⊾R}-C , 0.018 µ 145, 0.79 μ A549, 0.12 7). A μ 20a 22a 5- \mathbf{fi} 1 +, **22a**), CC -145 (0.054 C 116 (0.21 μ **20**a, 0.16 µ С (0.18 µ **20**a, 0.32 μ 22a), **20**a, 0.96 µ 22a) . C 21a μ CC R-1 ++ С $(0.62 \ \mu$) 145 $(0.19 \ \mu)$ 50 . C (17a/b) 5-, (19a/b), (20a/b),(21a/b),(22a/b) , C 116 (23a/ , b) (24a/b) 4-С 23a/b 24b A549

50% 1.

Article

Figure 7. 19a 50 C -60 . C -60. . R- 0.58 0.40 (400), P-<0.0001 .

Table 4. Cytotoxicity of t 19a in Drug-Resistant Isogenic Human Cancer Cell Lines

	50 =	\pm $(\mu)^a$		
			-	Ь
	HCT116	HCT116-siTOP1		
19a	0.076 ± 0.010	0.45 ± 0.31	5.9	
1	0.009 ± 0.001	0.075 ± 0.014	8.3	
	DU-145	DU145-RC0.1		
19a	0.018 ± 0.002	2.38 ± 0.34	132	
1	0.021 ± 0.016	4.73 ± 0.68	225	
	MCF-7	MCF-7/ADR		
19a	0.34 ± 0.098	0.95 ± 0.35	2.8	
	0.15 ± 0.003	11.67 ± 1.94	77.8	
	HepG2	HepG2/ADR		
19a	0.30 ± 0.050	3.20 ± 0.40	10.7	
	0.19 ± 0.048	9.04 ± 0.14	47.6	
a 50	(±) fi 50%		
, ` -R	•		50	
-	50		•	

Figure 9. (A)

 $\begin{array}{c} 1 (225 \cdot) & 19a (132 \cdot), \\ (5) \\ 364 & 19a. \end{array}$

EXPERIMENTAL SECTION

General Experiments. С., А -A А А ; ۲R fi . (. 4-(B -5d 1,3) -1- (14) -3-.⁶⁶ C C). (254 A100 В A A C 400 C-А 6120 () А С . A С, 95%. , 1.0 fl 220 / 50% 15% B ff (50% 3) 85% 35 Α A С -. A Α С , С А General Procedure for Synthesis of Schiff's Base 12a and 12b. 6-(9.8,40) , 42 3-) ((200) 12 (2×10)) 100%. 1 ff }R \mathbf{fi} *N*-(2-Hydroxylethyl)-6-bromoveratraldimine (**12a**). ¹ (C C $_3$) δ 8.58 (, 1), 7.54 (, 1), 6.99 (, 1), 3.95–3.89 (, 8), 3.79 (, J = 4.7), 2). N-(3-Hydroxylprapyl)-6-bromoveratraldimine (12b). $\begin{array}{c} (C \ C_{3}) \ \delta \ 8.53 \ (, 1 \), \ 7.45 \ (, 1 \), \ 7.00 \ (, 1 \), \ 3.91 - 3.86 \ (\ , \\ 8 \), \ 3.82 \ (, J = 6.2 \ , 2 \), \ 1.96 \ (\ , J = 6.0 \ , 2 \). \end{array}$ General Procedure for the Synthesis of 13a and 13b. (60%, 6.69 , 167)) , (100 0 °C 15

12a (12b, 33 (100).) $0\,^\circ C = 1$, , 198 (15) 1) (20 0 °C. (100)). (3×50) 4) (13a (13b), \mathbf{fi} General Procedure for Synthesis of 15a and 15b.

,

General Procedure for Synthesis of 16a and 16b.

 $\begin{array}{c} 2-(3-(Benzo[d][1,3]dioxol-5-yl)-6,7-dimethoxy-2-(2-(methoxymethoxy)ethyl)-1-oxo-1,2-dihydroisoquinolin-4-yl)-acetaldehyde (16a). , 85\%. 1 (C C_3) & 9.57 (, J=1.8 , 1), 7.90 (, 1), 6.93 (, J=7.8 , 1), 6.81-6.73 (, 3), 6.08 (, 2), 4.50 (, 2), 4.09 (, J=6.8 , 2), 4.03 (, 3), 3.97 (, 3), 3.79-3.67 (, 2), 3.53-3.47 (, 2), 3.21 (, 3).^{13}C (C C_3) & 199.7, 161.6, 153.8, 149.3, 148.4, 148.2, 141.8, 131.6, 128.0, 123.7, 119.5, 110.2, 108.7, 108.3, 106.4, 103.4, 101.7, 96.2, 64.4, \\ \end{array}$

56.2, 56.1, 55.1, 45.9, 44.6. - m/z: 455.2 + ⁺.

General Procedure for the Synthesis of 17a and 17b.

16a (16b , 0.5)	
(0.4)	(10) 50	
fl.fl			

fi

 $\begin{array}{c} (,1 \), /.39 - /.5/(\ ,2 \), /.25(\ ,1 \)), /.19(\ ,1 \), 6.11(\ ,2 \), \\ 5.08(\ ,J = 5.6 \ ,1 \), 4.54(\ ,J = 4.2 \ ,2 \), 4.37 - 4.33(\ ,2 \), \\ 4.12(\ ,3 \), 4.06(\ ,3 \). ^{13}\text{C} \qquad (C \ C_3) \delta 165.8, 154.0, 149.8, \\ 147.5, 147.5, 135.4, 131.9, 129.4, 123.8, 120.8, 118.7, 118.3, 117.3, \\ 108.5, 105.0, 102.8, 102.0, 101.7, 64.0, 56.8, 56.3, 56.2, \\ m/z: 394.1276 \ + \ ^+, \qquad C_{22 \ 20 \ 6} 394.1285. \end{array}$

12-(3-Hydroxypropyl)-2,3-dimethoxy-[1,3]dioxolo[4',5':4,5]benzo[1,2-c]phenanthridin-13(12H)-one (**17b**).

96%, = 263.4-264.2 °C. ¹ (C C $_3$) δ 7.98 (, J = 8.8 , 1), 7.92 (, 1), 7.60 (, 1), 7.59–7.55 (, 2), 7.19 (, 1), 6.12 (, 2), 4.72 (, J = 6.6 , 2), 4.12 (, 3), 4.07 (, 3), 3.54 (, J = 6.6 , 2), 2.16–2.07 (, 2). ¹³C (C C $_3$) δ 165.0, 153.7, 149.8, 147.6, 147.4, 135.1, 131.7, 129.0, 123.5, 121.1, 119.4, 118.4, 117.5, 108.9, 104.9, 102.8, 102.3, 101.6, 60.1, 56.2, 56.2, 48.3, 32.8. () $m/z: 408.1457 + +, C_{23-22-6} 408.1442.$

General Procedure for the Synthesis of 18a and 18b. 17a(17b, 0.5) (10

(5

)

fi

0 °C.

1

fi

),

 C_{2} (0.8

)

-

 $\begin{array}{c} 12-(2-Chloroethyl)-2,3-dimethoxy-[1,3]dioxolo[4',5':4,5]benzo-[1,2-c]phenanthridin-13(12H)-one (18a). , 94\%, \\ = 236.5-237.3\ ^{\circ}C.^{1} \ \delta 8.83\ (,J=9.0\ ,1\),8.31 \end{array}$

General Procedure for the Synthesis of 19a/b-25a/b.

		18a (18b, 0.8	7),	₃ (870	, 8.7),
	(, 8.7)		(20
)					fl	3-6 ,		,	
				fi					

12-(2-(Dimethylamino)ethyl)-2,3-dimethoxy-[1,3]dioxolo-[4',5':4,5]benzo[1,2-c]phenanthridin-13(12H)-one (**19a**).

 $\begin{array}{c} (1, 3) (1, 2) (1$

 $\begin{array}{l} 12-(3-(Dimethylamino)propyl)-2,3-dimethoxy-[1,3]dioxolo-[4',5':4,5]benzo[1,2-c]phenanthridin-13(12H)-one (19b).\\ , 70\%, = 173.2-174.3 \ ^{\circ}C. (B, ^{-1}), 1612 (),\\ 1582.^{1} (C C_3) \delta 7.97 (, J=8.4 , 1), 7.91 (, 1), 7.58-7.53 (, 2), 7.48 (, 1), 7.19 (, 1), 6.13 (, 2), 4.55 (, J=7.2 , 2), 4.12 (, 3), 4.07 (, 3), 2.51 (, J=7.2 , 2), 2.34 (, 6), 2.18 (, J=7.2 , 2). ^{13}C (C C_3) \delta 164.7, \end{array}$

· `r^{fi} fi

 $= C_{27} A^{32} b^{2} a^{4,0} = A^{32} b^{2} a^{4,0} A^{32} b^{2} a^{4,0} A^{3,0} a^{2} a^{2,0} A^{3,0} a^{2,0} a^{2,0} A^{3,0} a^{2,0} a^{2,0} a^{2,0} A^{3,0} a^{2,0} a^{2$ 449.57 23.7285(4) ${}^{A}_{,\beta} = 91.6653(13)^{\circ}, V = 2259.82(5)^{A}_{,\beta} = 103^{\circ}, V =$ $P2_1/c$ (. 14), = 4, μ (C α) = 0.710 ⁻¹, 10230 fl) = 0.1495. C 20b С С С CC C 1579803. C CC C, 12 CB2 1 , : + 44(0)1223 - 336033С \square

2,3-Dimethoxy-12-(2-(pyrrolidin-1-yl)ethyl)-[1,3]dioxolo-[4',5':4,5]benzo[1,2-c]phenanthridin-13(12H)-one (21a).

 $\begin{array}{c} & (1,2,1) \\$ $\begin{array}{c} (1,2), (1,3), (1$ 108.8, 104.7, 102.8, 102.6, 101.5, 56.2, 56.1, 54.3, 54.1, 51.0, 23.6. () *m/z*: 447.1916 + C_{26 27 2 5} +, 447.1914. - m/z: 447.2 + ⁺.

2,3-Dimethoxy-12-(3-(pyrrolidin-1-yl)propyl)-[1,3]dioxolo-[4',5':4,5]benzo[1,2-c]phenanthridin-13(12H)-one (21b).

 $\begin{array}{c} & (2.10), \\$ $\begin{array}{c} (1,1), 1,3,7,(1,1) = 0.0, (1,1,1), 1.0, (1,2), (1,1,1), (1,$ ¹³C $(C C_3) \delta$ 164.7, 153.6, 149.7, 147.6, 147.4, 135.3, 131.7, 129.0, 123.4, 121.2, 119.5, 118.3, 117.3, 108.8, 104.9, 102.9, 102.1, 101.6, 56.2, 56.2, 53.8, 53.3, 49.9, 27.4, 23.4. () m/z: 461.2067 + +, $C_{27 \ 29 \ 2} \ 5$ 461.2071.

2,3-Dimethoxy-12-(2-(piperidin-1-yl)ethyl)-[1,3]dioxolo-[4',5':4,5]benzo[1,2-c]phenanthridin-13(12H)-one (22a).

119.7, 118.2, 117.5, 108.9, 104.7, 102.8, 102.7, 101.5, 57.2, 56.2, 56.1, 54.6, 49.8, 25.8, 24.2. $C_{27 \ 29 \ 2} \ _{5} \ _{5} \ _{6} \ _{1.2071} \ ^{\bullet} R \ _{-} \ m/z: \ _{6} \ _{1.2076} \ _{+} \ ^{+}.$

2,3-Dimethoxy-12-(3-(piperidin-1-yl)propyl)-[1,3]dioxolo-

[4',5':4,5]benzo[1,2-c]phenanthridin-13(12H)-one (**22b**). , 60%, = 110.6-112.3 °C. (B, ⁻¹), 1639, 1612, 1592.¹ (C C₃) δ 7.98 (, J = 8.7 , 1), 7.91 (, 1), 7.60-7.55 (, 2), 7.48 (, 1), 7.19 (, 1), 6.10 (, 2), 4.55 (, J = 7.2) $\begin{array}{c} ,2 \\ ,4.12 \\ (,3 \\),4.06 \\ (,3 \\),2.50 \\ (,J=7.2 \\ ,2 \\),2.34-2.13 \\ (,6 \\),1.51-1.30 \\ (,6 \\),1^{13}C \\ (C \ C \ _3) \\ \delta \ 164.6,153.7,149.7, \\ 147.6,147.5,135.1,131.7,128.9,123.5,121.0,119.4,118.3,117.4, \\ \end{array}$ 108.7, 104.9, 102.9, 102.0, 101.6, 56.2, 56.1, 55.7, 53.9, 50.1, 25.4, 25.2, 23.9. () m/z: 475.2227 + ⁺, 475.2227. C_{28 31 2 5}

2,3-Dimethoxy-12-(2-morpholinoethyl)-[1,3]dioxolo[4',5':4,5]benzo[1,2-c]phenanthridin-13(12H)-one (23a).

48%, = 220.5-221.1 °C. (B, ⁻¹), 1639, 1611, 1594. ¹ (C C₃) δ 7.93 (, J = 8.7 , 1), 7.88 (, 1), 7.64 (, 1), $(C C_3) \circ 7.93 (, J = 0.7, 1, 1), 7.00 (, 2), 4.66 (, 7.54 (, 1), 7.51 (, J = 8.7, 1), 7.14 (, 1), 6.09 (, 2), 4.66 (, J = 0.7, 1), 7.51 (, J = 0.7, 1), 7.14 (, 1), 6.09 (, 2), 2.67 (, J = 0.7, 1), 7.51 (, J = 0.7, 1)$ J = 6.2 , 2), 4.10 (, 3), 4.05 (, 3), 3.34 (, 4), 2.67 (, J =6.2 , 2), 2.21 (, 4). ¹³C (C C $_3$) δ 165.2, 153.5, 149.6, 147.5, 147.4, 135.6, 131.5, 129.0, 123.2, 121.2, 119.7, 118.3, 117.6, 108.9, 104.8, 102.8, 102.5, 101.6, 66.9, 56.6, 56.2, 56.2, 53.4, 49.3.

() *m/z*: 463.1875 C_{26 27 2 6} + 463.1864. - m/z: 463.2 + ⁺.

2,3-Dimethoxy-12-(3-morpholinopropyl)-[1,3]dioxolo[4',5':4,5]benzo[1,2-c]phenanthridin-13(12H)-one (23b

 $\begin{array}{lll} J=407.\ 632 & 094\ 504.0723 & (C)\ -353.271 & (,-358.2703\ 9) \\ \delta 7.74 & (,1)\ ,7.68 & (,J=8.8\ ,1)\ ,7.50 & (,J=8.8\ ,1)\ ,7.30 & (,\\ 1\),7.12 & (,1)\ ,6.80 & (,1)\ ,6.06 & (,2)\ ,4.21 & (,2)\ ,4.00 & (,3)\ ,\\ 3.95 & (,3)\ ,2.88 & (,J=6.4\ ,2)\ ,2.60 & (,J=6.4\ ,2)\ ,2.24 & (,\\ 6\).\ ^{13}C & (C\ C\ _3)\ \delta\ 148.8,\ 148.7,\ 148.2,\ 147.6,\ 142.9,\ 131.0,\\ 126.6,\ 125.5,\ 125.2,\ 124.9,\ 123.9,\ 119.9,\ 110.2,\ 106.4,\ 104.5,\ 101.2,\\ 100.8,\ 58.4,\ 56.3,\ 56.2,\ 50.8,\ 50.0,\ 46.0. & ()\ m/z:\ 407.1960 \\ + & ^+, & C_{24\ 27\ 2\ 4}\ 407.1965. & - & m/z:\ 407.2\ + & ^+. \end{array}$

6.0299006.0299142.240 40 9009145.24C148.8,9-167.27037.8,

m = -159. (-235.8 (6), -182.212222.6.67.12 (, 1), 6.80 (, 1), 6.06 (, 2), 4.21 (, 2), 4.003 992.2((

Synthesis of N-(4-Methoxybenzyl)-6-bromoveratraldimine (33). A ff B 12a

Synthesis of 3-(Benzo[d][1,3]dioxol-5-yl)-4-(2-hydroxyethyl)-6,7dimethoxy-2-(4-methoxybenzyl)isoquinolin-1(2H)-one (34). A -" 15a 15b",

16b", **35 34 . . ,** 82%.¹ **. (C** C₃) δ 9.56 (, J = 2.0 **,** 1), 7.98 (, 1), 6.87-6.72 (, 7), 6.52 (, 1), 6.05 (, 2), 5.19 (, J = 14.6 , 1), 5.06 (, J = 14.7 **,** 1), 4.05 (, 3), 3.99 (, 3), 3.76 (, 3), 3.50 (, J = 2.0 **,** 2).¹³C **(C** C₃) δ 199.6, 161.8, 158.6, 153.8, 149.4, 148.3, 148.0, 141.7, 131.6, 129.9, 128.1, 127.7, 123.7, 119.7, 113.7, 110.0, 108.8, 108.5, 106.6, 103.5, 101.6, 56.2, 56.1, 55.2, 48.8, 44.4. **.** m/z: 488.2 + ⁺.

Synthesis of 2,3-Dimethoxy-[1,3]dioxolo[4',5':4,5]benzo[1,2-c]phenanthridin-13(12H)-one (**36**). 35 (270

, 0.5) (4)	50	- fl . fl	
	,	fi	
1643 (), 1500. ¹ (, <i>J</i> 9 28.844.4.1),	, ` R ⁽	fi 36 , 62%. (B, $^{-1}$),) δ 11.53 (, 1), 8.36 (, 1), 8.33 4111 8.8 (, (2 4.145 46143 5)	5.2,

2,3-Dimethoxy-13-(2-(4-methylpiperazin-1-yl)ethoxy)-[1,3]dioxolo[4',5':4,5]benzo[1,2-c]phenanthridine (**44a**).

 $74\% = 206.5 - 207.4 \text{ °C.} (B, ^{-1}), 1622, 1596.^{1} (C C_3) \delta 8.54 (, 1), 8.17 (, J = 8.8 , 1), 7.82 (, 1), 7.73 - 7.63 (, 2), 7.23 (, 1), 6.11 (, 2), 4.92 (, J = 6.4 , 2), 4.14 (, 3), 4.06 (, 3), 3.07 (, J = 6.4 , 2), 2.92 - 2.65 (, 4), 2.65 - 2.41 (, 4), 2.32 (, 3).^{13}C (C C_3) \delta 157.2, 152.7, 149.3, 148.1, 147.9, 138.9, 131.1, 130.0, 128.3, 123.7, 118.3, 117.5, 113.9, 104.5, 104.3, 102.3, 102.2, 101.3, 64.1, 57.2, 56.1, 55.3, 53.8, 46.2. () <math>m/z$: 476.2179 + ⁺, $C_{27 - 30 - 3 - 5}$ 476.2180.

13-(2-(1H-Imidazol-1-yl)ethoxy)-2,3-dimethoxy-[1,3]dioxolo-[4',5':4,5]benzo[1,2-c]phenanthridine (**45a**).

 $\begin{array}{l} 56\%, & = 238.9-239.1 \ ^\circ C. & (B, \ ^{-1}), \ 1621, \ 1597. \ ^1 \\ (C \ C_3) \ \delta 8.47 \ (, 1), \ 8.19 \ (, f = 8.8 \ , 1), \ 7.83 \ (, 1), \ 7.71 \ (, f = 8.8 \ , 1), \ 7.67 \ (, 1), \ 7.58 \ (, 1), \ 7.24 \ (, 1), \ 7.12 - 7.09 \ (, 2), \ 6.12 \ (, 2), \ 5.06 \ (, f = 5.2 \ , 2), \ 4.59 \ (, f = 5.2 \ , 2), \ 4.15 \\ (, 3), \ 4.06 \ (, 3). \ ^{13}C \ (C \ C_3) \ \delta 156.4, \ 153.1, \ 149.6, \ 148.2, \ 148.0, \ 138.5, \ 137.7, \ 131.3, \ 130.1, \ 129.8, \ 128.2, \ 124.2, \ 119.5, \ 118.4, \ 117.9, \ 113.6, \ 104.5, \ 104.1, \ 102.4, \ 101.9, \ 101.4, \ 64.9, \ 56.3, \ 56.2, \ 46.5. \\ (\) \ m/z: \ 444.1557 \ + \ ^+, \ C_{25 \ 22 \ 3 \ 5} \end{array}$

38 (221 , 0.47 , 1.18 (20), $_{2}C_{3}$ (163). . 0.7 0.118), ()) (20 (100) (3×50)). (4) fi

2,3-Dimethoxy-13-(3-(dimethylamino)propoxy)-[1,3]dioxolo-[4',5':4,5]benzo[1,2-c]phenanthridine (**39b**). , 82%, = 148.6-150.4 °C. (B, ⁻¹), 1618, 1593. ¹ (C C $_3$) δ 8.56 (, 1), 8.18 (, = 8.8 , 1), 7.83 (, 1), 7.72

 $\begin{array}{c} (C C_3) & (C C_3)$

2,3-Dimethoxy-13-(3-diethylamino)propoxy)-[1,3]dioxolo-[4',5':4,5]benzo[1,2-c]phenanthridine (40b). 61%, = 146.2-147.8 °C. (B, ⁻¹), 1620, 1594. ¹ () δ 8.45 (, J = 9.0 , 1), 8.35 (, 1), 8.04 (, 1), 7.75 (, J = 9.0 , 1), 7.57 (, 1), 7.43 (, 1), 6.19 (, 2), 4.71 (, J = 6.4 , 2), 4.06 (, 3), 3.93 (, 3), 2.70 (, J = 6.8 , 2), 2.53 (, J = 7.2 , 4), 2.05 (, J = 6.8 , 2), 1.01 (, J = 7.2 , 6). ¹³C () δ 157.3, 153.3, 149.7, 148.2, 148.0, 138.3, 131.0, 130.1, 127.7, 123.9, 119.6, 117.5, 113.4, 104.7, 104.0, 103.6, 101.8, 101.4, 64.5, 56.4, 55.9, 49.1, 47.0, 26.4, 12.2. () m/z: 463.2233 + +, C_{27} 31 $_{2}$ 5 463.2227. - m/z: 463.2 + +. 2,3-Dimethoxy-13-(3-(pyrrolidin-1-yl)propoxy)-[1,3]dioxolo-[4',5':4,5]benzo[1,2-c]phenanthridine (41b). 80%, = 162.8-163.9 °C. (B, ⁻¹), 1619, 1594. ¹ (C C ₃) δ 8.48 (, 1), 8.07 (, J = 8.8 , 1), 7.71 (, 1), 7.67-7.57 (, 2), 7.18 (, 1), 6.09 (, 2), 4.77 (, J = 6.8 , 2), 4.10 (, 3), 4.05 (, 3), 2.78 (, J = 6.8 , 2), 2.62 (, , 4), 2.24 (, J = 6.8 , 2), 1.83 (, , 4). ¹³C (C C ₃) δ 157.3, 152.5, 149.1, 147.9, 147.7, 138.8, 130.9, 129.9, 128.2, 123.5, 118.2, 117.2, 113.9, 104.3, 104.2, 102.1, 101.1, 64.5, 56.1, 56.0, 54.4, 53.7, 28.8, 23.5. () m/z: 461.2082 + +, C₂₇ ²⁹ 2 5 461.2071. - m/z: 461.2 + +, C₂₇ ²⁹ 2 5 461.2071. - m/z: 461.2 + +,

2,3-Dimethoxy-13-(3-(piperidin-1-yl)propoxy)-[1,3]dioxolo-[4',5':4,5]benzo[1,2-c]phenanthridine (**42b**). , , 81%, = 153.7-155.3 °C. (B, ⁻¹), 1618, 1593. ¹ (C C ₃) δ 8.51 (, 1), 8.13 (, J = 8.8 , 1), 7.77 (, 1), 7.69–7.60 (, 2), 7.21 (, 1), 6.10 (, 2), 4.78 (, J = 6.2 , 2), 4.12 (, 3), 4.06 (, 3), 2.66 (, J = 7.6 , 2), 2.51 (, , 4), 2.24

J = 7.2, 2), 1.72–1.58 (, 4), 1.55–1.41 (, 2). ¹³C ((C C ₃) δ 157.4, 152.6, 149.2, 147.9, 147.7, 138.9, 130.9, 129.9, 128.2, 123.5, 118.3, 117.3, 113.9, 104.3, 104.3, 102.2, 102.1, 101.1, 64.6, 56.6, 56.1, 56.0, 54.7, 26.6, 25.9, 24.4. + $^+$, C_{28} $_{31}$ $_2$ $_5$ 475.2227. \mathbf{R} - $\binom{) m/z: 475.2229}{m/z: 475.2}$ + 2,3-Dimethoxy-13-(3-morpholinopropoxy)-[1,3]dioxolo-[4',5':4,5]benzo[1,2-c]phenanthridine (43b). $\begin{array}{l} 65\%, & = 171.8 - 172.9 \ ^{\circ}\text{C}. \\ (\text{C} \ \text{C} \ \text{3}) \ \delta 8.53 \ (\ \text{, 1} \), 8.16 \ (\ \text{, 1} = 9.2 \ , 1 \), 7.82 \ (\ \text{, 1} \), 7.69 \ (\ \text{, 1} \) \end{array}$ 1), 7.67 (, J = 8.8 , 1), 7.23 (, 1), 6.11 (, 2), 4.83 (, J = 6.6,2),4.13 (,3),4.07 (,3),3.76 (,J=4.8 ,4),2.67 (,J= 7.2 , 2), 2.56–2.53 (, 4), 2.22 (, J = 7.2 , 2). ¹³C (C C $_3$) δ 157.3, 152.6, 149.2, 147.9, 147.7, 138.8, 130.9, 129.9, 128.2, 123.5, 118.2, 117.3, 113.9, 104.3, 104.3, 102.2, 102.0, 101.1, 67.0, 2,3-Dimethoxy-13-(3-(4-methylpiperazin-1-yl)propoxy)-[1,3]dioxolo[4',5':4,5]benzo[1,2-c]phenanthridine (44b). $\begin{array}{l} (15,0),(1+,0),($ $J = 6.4 , 2), 4.14 (, 3), 4.07 (, 3), 2.70 (, J = 7.2 , 2), 2.67 - 2.41 (, 8), 2.32 (, 3), 2.22 (, J = 7.2 , 2). ^{13}C$ $(C \ C_3) \delta$ 157.3, 152.6, 149.2, 147.9, 147.7, 138.9, 131.0, 129.9, 128.2, 123.5, 118.3, 117.3, 114.0, 104.4, 104.2, 102.2, 102.1, 101.1, 64.5, 56.1, 56.0, 55.8, 55.2, 53.4, 46.0, 26.7. + $^+$, C_{28} $_{32}$ $_3$ $_5490.2336$. **R** - $\binom{m/z: 490.2339}{m/z: 490.23}$ + + +. 13-(3-(1H-Imidazol-1-yl)propoxy)-2,3-dimethoxy-[1,3]dioxolo-[4',5':4,5]benzo[1,2-c]phenanthridine (**45b**). $\begin{array}{l} 62\%, & = 217.4 - 218.5 \ ^{\circ}\text{C}. \\ (C \ C \ _3) \ \delta 8.47 \ (\ , 1 \), 8.19 \ (\ , 1 = 8.8 \ , 1 \), 7.84 \ (\ , 1 \), 7.70 \), 7.70 \ (\ , 1 \), 7.70 \), 7.$ = 8.8 , 1), 7.64 (, 1), 7.60 (, 1), 7.25 (, 1), 7.12 (, 1), 7.03 (, 1), 6.13 (, 2), 4.83 (, J = 6.0 , 2), 4.28 (, J = 6.82), 4.16 (, 3), 4.11 (, 3), 2.53 (, J = 6.4 , 2). ¹³C (C C $_3$) δ 156.8, 152.9, 149.4, 148.1, 147.8, 138.6, 137.2, 131.2, 130.0, 129.8, 128.1, 123.9, 118.9, 118.2, 117.5, 113.6, 104.3, 104.1, 102.4, 101.9, 101.2, 62.6, 56.1, 56.1, 44.3, 30.7. + ⁺, $C_{26 \ 24 \ 3 \ 5}$ 458.1710. () m/z: 458.1712 m/z: 458.2 + TOP1-Mediated Cleavage Assay. .⁷³ A 3'- ³² -117-Α ⁷³ A 2 А 1 20 ff (10 - C 7.5, 50 15 / B A) 25 °C C,5 C₂, 0.1 А, 20 (0.5% fi). (80% , 10 A, 0.1% , 1 0.1%). A 2.0% Α. fl). C (117-TOP1-Mediated Unwinding Assay. .⁷⁸ B fl, (20μ) B 322 A (0.5 μ), 1 (10) ff C , 1 (10 7.5, 0.1 A, 5 C₂, 50 B A). , 15 µ / А 10 37 °C, 1. A 30 ff. 4 1% ff A 5 / TDP1 Inhibition Assay. A. Fluorescence Assay. 50

fl $(20 \,\mu$ / , 0.02 μ fi 1 C, 1 1 (100) 10 - C, 7.5, 50) A, 1 384-((5μ)). 30 () 485/ 510 ſ $(25 \, \mu$, 35) fi () (485/). 1 510

fl

- B. Gel-Based Assay.⁷⁶ A 5'- ³² -А 3'-14) 1 10 1 15 C, 7.5, 80 ff 50 C, 2 A, -20. 1 0.01% , 40 μ / ΒA, 99.5% (/ 1 , 5 A, 0.01% (/) 0.01% , (´/) 16% А (). (A 9500),
- Melecular Modeling.
- 1- A- (B14), , ,
- fi . C C .
- , 94 fi , 0.01 , fi

 - A B fi (B1, R) A B fi (B1, R) A B fi A B fi
- () . A B fi fi
- FRET Melting Assay.
- , 6-FAM (fl) fl TAMRA (, 6fl). 10 (5'-FAM- (A A C A A-- ААСАА)-ТАМ-ARA-3'), В . $0.4 \ \mu$) (fi (2μ) - C ff (10 , 7.4) 60 С 37 °C 0.5 . 2 -C,⊾R С 470 **≻**ℝ 530
- 1 °C 37–99 °C, 30 .

- 37 °C, 96 Immunodetection of Cellular TOP1-DNA Complex. С $\begin{array}{ccc} 1 - A \\ B & fl \end{array}$ C -116 1) 25 °C (1 30 . А (0.5 , 100%) −20 °C. ,) 25 °C (12000 А 10 75% Α (8,0.2). 7.2 (ì). Á А $A(2\mu)$ 30 µ ff (25 , 6.5) 2 1 (A , 1:1000) 4 °C (C , 1:3000) 1 ..**r** С ¥R). (74 γ H2AX Detection. γ 2A B fl , C 116 $(2\times 10^4$ /) 3 37 °C.A 25 °C 4% 15 fi / B B ff . C -100 B 0 °C 30 0.5% 5% / B 37 °C 3. fl -γ 2A (139; .9718, C) 37 °C $_{\mathrm{ff}}$ 488-2.0 μ / (A21206,) (А, 4',6-) 37 °C 2. -2.ff.
 -) 710 ((3.0×10^{5}) Flow Cytometry. C 116) / 6-24 . Β, $1 \times$ ff, 5.0 µ С 10.0μ (В , C) 15 fl (B , AC CA) 1 Pharmacokinetic Study in Rat. (220-250
- $\begin{array}{cccc}
 (& 220-230 \\
 , n = 3) & 19a & 10\% \\
 10\% & 15(&) & (1 /) \\
 (5 /), & . B & (200 \mu)
 \end{array}$
- In Vivo Acute Toxicity.

,

9926

Article

(n = 4)			()	•
			19a	•
300, 240, 192, 154,	123	/ ,		
(/	-)	. A

In Vivo Antitumor Activity. A A CC 116. 4-512-15 C 116 C 116 (100 μ , 1 × 10⁷)

(V) : V = ($\times)^{2}/2, \qquad .A$

) \times 100%. Statistical Analysis. A \pm (A A) (, A), , .

ASSOCIATED CONTENT

Supporting Information

AC		: 10.1021/ .	-
.8 00639.			
1-		6 ()
-	fi	20b (C)	
	19a	1 (B)	
	41a	1 (B)	
	((C)	

AUTHOR INFORMATION

Corresponding Authors

* .A.: ,+86-20-39943413; ,+86-20-39943413; -, @ . . . * . .: ,+1 (240) 760-6142; ,+1 (240) 541-4475; - , @ . .

ORCID 💿

- 10000-000 - 10.85 - 10

Author Contributions

fi .

ACKNOWLEDGMENTS

C (. 81373257), (. 2013010015609),

C (C C),

, B , , , A (01 BC 006150-19).

ABBREVIATIONS USED

REFERENCES

(1) , .; R , .; . .; C , ..A . Science 1998, 279, 1534–1541.

(2) C , . . A : , , ,
. Annu. Rev. Biochem. 2001, 70, 369–413.
(3) , . C. A . Annu. Rev. Biochem. 1996, 65, 635–692.

 $(4) , .; , .; , ..; , ... \mathbf{R} ... \mathbf{R}$

Rev. Mol. Cell Biol. **2016**, 17, 703–721. (5) , .; , .; , .; , C. A

. Chem. Biol. 2010, 17, 421–433. (6) , .; , C. :

. Cancer Lett. **1998**, 124, 15–21.

- (9) B , .; , . : . . Arch. Pharm. **2017**, 350, 1600236. (10) , , , .; C , .; , .; , .; C , B. 10-

, . Cancer Chemother. Pharmacol. **1998**, 41, 257–267. (11) , .; , .; , . C -

10- . Chin. J. Clin. Oncol. 2003, 30, 26–28. (12) . . . :

. Expert Opin. Ther. Targets 2008, 12, 1243–1256.

(15) , .; B , . .; \mathbf{R} , .A.; , .; , A. .; , .; , .; , .; , .A.; , .; , .A. .; , .; , .; , .; , .A.; , .; , C.; A , .; , .; \mathbf{R} , C. \mathbf{R} - A . Prog. Nucleic Acid Res. Mol. Biol. **2006**, 81, 179–229.

A 40 . Mol. Cancer Ther. 2014, 13, 214–220.

(17) , .; , . .; C , . . - A

. Proc. Natl. Acad. Sci. U. S. A. **2001**, 98, 12009–12014. (18) , . .; A , .; , C.; , . - A Anti-Cancer Agents Med. Chem. **2008**, 8, 381–389.

(19) , . .; B , A. B.; , . B. .; , . C. A.; (19) , . , , . C.; , . A. A A -. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 11534–11539. (20) , .; , . .; , B. B.; , . .; , .; , . - A 1 (1) A . J. Biol. Chem. **2012**, 287, 12848–12857. (21) , .; C , . .; C , . . 1 . J. Biol. Chem. 2005, 280, 36518–36528. (22) , .; , . . : A A -. DNA Repair 2016, 43, 57-68. (23) A , . .; A , . .; · , . . . Nat. Rev. Cancer **2015**, 15, 137–151. (24) , .C.; , .; , .; , . .; , . . A (1) Α 2-A . Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 8953– 8958. . Nat. Genet. **2002**, 32, 267–272. (26) B , .; , . .; B , .; , . A С.; A . J. Biol. Chem. **2004**, 279, 55618–55625. , . C.; , .; , A. .; , . .; , , . . (27). .; A -. Cancer Chemother. Pharmacol. 2004, 53, 107-115. EMBO J. 2007, 26, 4732-4743. (29) - , . .; , .; , .; , .; , .; C , . . A -1 . DNA Repair 2009, 8, 760-766. A- . EMBO J. 2009, 28, 3667–3680. ЕМВО Ј. 2007, 26, 4720-4731. . Biochem. Pharmacol. **2012**, 83, 27–36. (33) A , .; , . .; - , . . 1 A. Nucleic Acids Res. **2014**, 42, 3089–3103.

2–399. , .-. .; , .; , .; , С. - А 1 (1) . Expert Opin. Ther. Pat. 2011, (37) , .- . 21, 1285–1292. , _{, , R} C. A. . - A (38) C , . .;

. Drug Metab. Rev. Α **2014**, *46*, 494–507.

(39) , . .; , . .; , . . - A

(51), A.; , .; , .; .; , .; A , 🙀 .; , .; , .; , .; **.**R , .; , .<u>;</u> , А .: , . 1 . Bioorg. Med. Chem. 2015, 23, 2044-2052. 4457-4478. (33) C - , ; ; **R** , . .; , C.; A , .; C , A.; , (53) C -, A.; C , B. .; , A.; , A.; , A. .; , .; C , в , . .; - A (1)(1). J. Med. Chem. 2013, 56, 182-200. , C.; (54) , . C.; A , .; , .; C -2-, , - - A . J. Med. Chem. 2014, 57, 4324–4336. , . .; A , .; , C.; A , .; (55)7-, 8-, 9-, 10-(1)- - A (1) . J. Med. Chem. 2015, 58, 3188–3208. , .; , . .A.; , C. B.; _▶, A.; _▶, C. .; (56) , .; , C.; , .; A х, .; х , .; С 1, - A 2 (2). J. Med. Chem. 1 (1), - A 2017, 60, 3275-3288. ,.; , (57) , .; **R** , .; . C . Nat. Chem. 2016, 8, 531–541. (58) , .; -,..; ,.. Med. Res. Rev. 2016, 36, 32–91. (59) , . .; , .; , .; , A.; , . .; , . .; , . .; A , . .; , . . (). J. Agric. Food Chem. **2017**, 65, 4993–4999. 2/ 562 . Biochemistry **2010**, 49, 10131–10136. (61) , . .; , **. .** Chem. Res. Toxicol. 1993, 6, 813-818. (62) , . A.; , . .; , . C.; , . Α Α А о-. Arch. Biochem. Biophys. **1999**, 370, 66–76. (63) B , . .; , . .; C , .; , . . A-, . Bioorg. Med. Chem. 2006, 14, 5439-5445. (64) , C. .; , , , , , A A : . J. Photochem. Photobiol., A 1993, 74, 231–238. (65) , .- .; , .- .; , .- .; , .- .; , .- .; , .- .; , .- .; , .- .; , : A. J. Med. Chem. 2009, 52, 2825–2835. , , , C , C. . - -(66) . Chem. - Eur. J. 2010, 16, 282-287.

- Article
- (67) , C. C.; , **R** .; C , C. . C -
- Eur. J. **2008**, 14, 9503–9506. (68) , .; , A. .; , . .
- . J. Org. Chem. **1976**, 41, 957–962. (69) , .; , .; , A.; A , .; , .; , .; C , . 7-
- .; , .; C , . 7- -. J. Med. Chem. 2011, 54, 6106–6116.
- (70) , .; , .; A , .; C , .; , . 7-

. J. Med. Chem. **2014**, 57, 1289–1298.

. J. Med. Chem. **201**7, 60, 5364–5376. (72) , . .; B , . A

- , *Tetrahedron* **1993**, 49, 10305–10316. (73) , . .; , . A
- . Nat. Protoc. **2008**, 3, 1736–
- (74) , .; , . .; , B. A.; , .
- -644282. Mol. Cancer Ther. 2011, 10, 1490–1499.
- (75) , B. .; , .; , . .; B , C. A.; B , A. B., .; , .
- . Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 15387– 15392.
- A (1) .J. Med. Chem. 2009, 52, 7122–7131.
- (77) , . ; C , . .; , J. Med. Chem. **2004**, 47, 829–837.
- (78) , .; C , . .; , .; , .; , .; A 1210 Å . Nucleic Acids Res. **198**7, 15, 6713–
- 6731. (80) C 60
- (80) , C 60 . Nat. Rev. Cancer 2006, 6, 813–823. (81) , . .; C , . .; , . . A A
- A = C 60. Mol. Cancer Ther. **2010**, 9, 1451–1460.
 (82)
 , C.;
 , .;
 , .;
 , .;
- (82) , . C.; , .; , .; , .; , .; , . 1.6 C -60. Clin. Cancer Res. 2015, 21, 3841– 3852.
- Cancer Res. 2007, 67, 8752–8761. (84) , . .; , \mathbf{R} , .; , . C - A A -. J. Biol. Chem. 1985, 260, 14873–14878.

- 2001, 61, 1964–1969. (86) , B. .; , .; C , .; , .; , .; , .; B , A. B. . J. Med. Chem. 2005, 48, 2336–2345. (87) , C. .; , C. .; , . . Mol. Pharmaceutics 2011, 8, 1996–2011. (88) , .; , .; A , .; B , .; , . (): A A . J. Med. Chem. 2016, 59, 6353–6369.

. Biochem. Pharmacol. **2012**, 84, 52–58.